Show simple item record

dc.contributor.advisorJian Lin.en_US
dc.contributor.authorDing, Minen_US
dc.contributor.otherWoods Hole Oceanographic Institution.en_US
dc.coverage.spatialzma----en_US
dc.date.accessioned2015-06-10T19:11:28Z
dc.date.available2015-06-10T19:11:28Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/97340
dc.descriptionThesis: Ph. D., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2015.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractThis thesis investigates lithospheric dynamics of Earth's subduction zones and Martian tectonic provinces on multiple time scales ranging from short-term earthquake deformation to long-term tectonic loading. In Chapter 2, I use geodetic observations to constrain the postseismic viscoelastic deformation following the 1960 M9.5 Valdivia, Chile earthquake and quantify its stress loading on the rupture zone of the 2010 M8.8 Maule, Chile earthquake. Results of analysis reveal that the post-1960 viscoelastic process might have contributed to the triggering of the 2010 earthquake. Chapter 3 presents numerical experiments to investigate elastoplastic deformation and faulting in the overriding plates of subduction zones caused by the movement of subducted seamounts. Numerical simulations show that a group of normal faults would first appear on the seaward side of a subducted seamount, followed by a group of thrust faults on the landward side of the seamount. In Chapter 4, I use the most recent Martian gravity and topography data to constrain spatial variations in lithospheric flexural deformation for various tectonic regions on Mars. The effective lithospheric thickness is estimated to be relatively small for the plain regions in the southern highland, but relatively large for the impact basins in the northern lowland as well as for volcanic montes in the Tharis province. The regional variations in the estimated effective lithospheric thickness might reflect both spatial and temporal changes in the thermal state of Mars.en_US
dc.description.statementofresponsibilityby Min Ding.en_US
dc.format.extentpagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectJoint Program in Oceanography/Applied Ocean Science and Engineering.en_US
dc.subjectEarth, Atmospheric, and Planetary Sciences.en_US
dc.subjectWoods Hole Oceanographic Institution.en_US
dc.subject.lcshSubduction zonesen_US
dc.subject.lcshMorphotectonicsen_US
dc.titleLithospheric dynamics of Earth's subduction zones and Martian tectonic provincesen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentJoint Program in Oceanography/Applied Ocean Science and Engineeringen_US
dc.contributor.departmentWoods Hole Oceanographic Institutionen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
dc.identifier.oclc910515777en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record