MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Visual-inertial odometry with depth sensing using a multi-state constraint Kalman filter

Author(s)
Galfond, Marissa N. (Marissa Nicole)
Thumbnail
DownloadFull printable version (9.989Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics.
Advisor
Paul A. DeBitetto and Paulo C. Lozano.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The goal of visual inertial odometry (VIO) is to estimate a moving vehicle's trajectory using inertial measurements and observations, obtained by a camera, of naturally occurring point features. One existing VIO estimation algorithm for use with a monocular system, is the multi-state constraint Kalman filter (MSCKF), proposed by Mourikis and Li [34, 29]. The way the MSCKF uses feature measurements drastically improves its performance, in terms of consistency, observability, computational complexity and accuracy, compared to other VIO algorithms [29]. For this reason, the MSCKF is chosen as the basis for the estimation algorithm presented in this thesis. A VIO estimation algorithm for a system consisting of an IMU, a monocular camera and a depth sensor is presented in this thesis. The addition of the depth sensor to the monocular camera system produces three-dimensional feature locations rather than two-dimensional locations. Therefore, the MSCKF algorithm is extended to use the extra information. This is accomplished using a model proposed by Dryanovski et al. that estimates the 3D location and uncertainty of each feature observation by approximating it as a multivariate Gaussian distribution [11]. The extended MSCKF algorithm is presented and its performance is compared to the original MSCKF algorithm using real-world data obtained by flying a custom-built quadrotor in an indoor office environment.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 93-97).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/97361
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.