Show simple item record

dc.contributor.advisorGang Chen.en_US
dc.contributor.authorMcEnaney, Kennethen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2015-07-17T19:13:20Z
dc.date.available2015-07-17T19:13:20Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/97770
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2015.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 115-124).en_US
dc.description.abstractConcerns about climate change, the world's growing energy needs, and energy independence are driving demand for solar energy conversion technologies. Solar thermal electricity generation has the potential to ll this demand. Solar thermal technology could also be used to displace fossil fuels in applications which require heat as an input. This thesis addresses the potential of two solar thermal technologies: solar thermoelectric generators and aerogel-based solar thermal receivers. Thermoelectrics are materials which produce a voltage when subjected to a temperature gradient. In a solar thermoelectric generator (STEG), sunlight heats one end of the thermoelectric materials, generating a voltage across the device. The voltage can be connected to a load and useful work can be extracted. By adding optical concentration and using higher-temperature materials, the power output and energy conversion eciency of STEGs can be increased. In this work, segmented thermoelectric generators (TEGs) made of bismuth telluride and skutterudite alloys are modeled, optimized, built, and tested. These TEGs achieve a heat-to-electricity conversion efficiency of 10.7% at a hot side of 550° C, the highest TEG eciency reported in this temperature range. From these TEGs, STEGs are built which achieve a sunlight-to-electricity conversion eciency of 5.7% at less than 60 suns, higher than the best reported literature values in this concentration range. With further improvements, it is projected that these STEGs will achieve 10% eciency at 100 suns. In any type of solar thermal system, heat losses from the system must be suppressed to achieve high eciency. Aerogels, which are stable ultra-low density foams, can suppress radiative and convective losses. It is shown that aerogel-based solar thermal receivers can increase the eciency of traditional solar thermal electricity and hot water generation. These results can help advance the field and expand the scope of solar thermal technologies.en_US
dc.description.statementofresponsibilityby Kenneth McEnaney.en_US
dc.format.extent124 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleThermoelectrics and aerogels for solar energy conversion systemsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc913413439en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record