MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the nature and origin of intuitive theories : learning, physics and psychology

Author(s)
Ullman, Tomer David
Thumbnail
DownloadFull printable version (25.61Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences.
Advisor
Joshua B. Tenenbaum.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis develops formal computational models of intuitive theories, in particular intuitive physics and intuitive psychology, which form the basis of commonsense reasoning. The overarching formal framework is that of hierarchical Bayesian models, which see the mind as having domain-specific hypotheses about how the world works. The work first extends models of intuitive psychology to include higher-level social utilities, arguing against a pure 'classifier' view. Second, the work extends models of intuitive physics by introducing a ontological hierarchy of physics concepts, and examining how well people can reason about novel dynamic displays. I then examine the question of learning intuitive theories in general, arguing that an algorithmic approach based on stochastic search can address several puzzles of learning, including the 'chicken and egg' problem of concept learning. Finally, I argue the need for a joint theory-space for reasoning about intuitive physics and intuitive psychology, and provide such a simplified space in the form of a generative model for a novel domain called Lineland. Taken together, these results forge links between formal modeling, intuitive theories, and cognitive development.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 221-236).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/97788
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Publisher
Massachusetts Institute of Technology
Keywords
Brain and Cognitive Sciences.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.