dc.contributor.advisor | Jesse H. Kroll. | en_US |
dc.contributor.author | Hunter, James Freeman | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Civil and Environmental Engineering. | en_US |
dc.date.accessioned | 2015-07-17T19:47:14Z | |
dc.date.available | 2015-07-17T19:47:14Z | |
dc.date.copyright | 2015 | en_US |
dc.date.issued | 2015 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/97794 | |
dc.description | Thesis: Ph. D. in Environmental Chemistry, Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2015. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (pages 101-110). | en_US |
dc.description.abstract | .Organic molecules have many important roles in the atmosphere, acting as climate and biogeochemical forcers, and in some cases as toxic pollutants. The lifecycle of atmospheric organic carbon is extremely complex, with reaction in multiple phases (gas, particle, aqueous) and at multiple timescales. The details of the lifecycle chemistry (especially the amount and properties of particles) have important implications for air quality, climate, and human and ecosystem health, and need to be understood better. Much of the chemical complexity and uncertainty lies in the reactions and properties of low-volatility oxidized intermediates that result from the oxidation of volatile organic precursors, and which have received comparatively little study thus far. This thesis describes three projects that link together the entire chain of oxidation (volatile to intermediate to condensed) in an effort to improve our understanding of carbon lifecycle and aerosol production. Laboratory studies of atmospherically relevant aerosol precursors show that the slow oxidation of intermediates is critical to explaining the yield and properties of aerosol under highly oxidized ("aged") conditions, and that the production of organic particles is significantly increased when intermediates are fully oxidized. This aging process is a strong function of molecular structure, and depends on aerosol concentration through the phenomenon of condensational trapping. Further laboratory studies of a series of (poly)cyclic 10 carbon alkanes show that structural effects are largely explained through fragmentation reactions, and that more generally, carbon-carbon bond scission is a ubiquitous and important reaction channel for oxidized intermediates. Finally, direct measurement of oxidized intermediate compounds in field studies shows that these compounds are abundant and important in the ambient atmosphere, with concentrations and properties in between those of volatile and particulate organic compounds. Together with other co-located measurements and complementary techniques, this enables estimates of emission, oxidation, and deposition to be constructed. The results from this thesis can be used to inform more sophisticated models of atmospheric organic carbon cycling, and to improve prediction of organic particulate matter concentrations. | en_US |
dc.description.statementofresponsibility | by James Freeman Hunter. | en_US |
dc.format.extent | 110 pages | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Civil and Environmental Engineering. | en_US |
dc.title | Oxidation of atmospheric organic carbon : interconnecting volatile organic compounds, intermediate-volatility organic compounds, and organic aerosol | en_US |
dc.type | Thesis | en_US |
dc.description.degree | Ph. D. in Environmental Chemistry | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Civil and Environmental Engineering | |
dc.identifier.oclc | 911923513 | en_US |