Show simple item record

dc.contributor.advisorFranz-Josef Ulm.en_US
dc.contributor.authorKhosh Sokhan Monfared, Siavashen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Civil and Environmental Engineering.en_US
dc.date.accessioned2015-07-17T19:47:35Z
dc.date.available2015-07-17T19:47:35Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/97797
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2015.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 175-183).en_US
dc.description.abstractDue to their abundance, organic-rich shales are playing a critical role in re-defining the world's energy landscape leading to shifts in global geopolitics. However, technical challenges and environmental concerns continue to contribute to the slow growth of organic-rich shale exploration and exploitation worldwide. The engineering and scientific challenges arise from the extremely heterogeneous and anisotropic nature of these naturally occurring geo-composites at multiple length scales. Specifically, the anisotropic poroelastic behavior of organic-rich shales becomes of critical importance for petroleum engineers. Thus, the focus of this thesis is to capture mechanisms of first-order contribution to the effective anisotropic poroelasticity of organic-rich shales which can pave the way for more efficient and effective exploration and exploitation. We introduce an original approach for micromechanical modeling of organic-rich shales which accounts for the effect of organic maturity on the overall anisotropic poroelasticity through morphology considerations. This morphology contribution is captured by means of an effective media theory that bridges the gap between immature and mature systems through the choice of the system's micro-texture; namely a matrix-inclusion morphology (Mori-Tanaka) for immature systems and a polycrystal/ granular morphology for mature systems. Also, we show that interfaces play a role on the effective elasticity of mature organic-rich shales. The models are calibrated by means of ultrasonic pulse velocity measurements of elastic properties and validated by means of lab measured nanoindentation data. Sensitivity analyses using Spearman's Partial Rank Correlation Coefficient show the importance of porosity and Total Organic Carbon (TOC) as key input parameters for accurate model predictions. These models' developments provide a mean to define a "unique" set of clay elasticity. They also highlight the importance of the depositional environment, burial and diagenetic processes on overall mechanical and poromechanical behavior of organic-rich shales.en_US
dc.description.statementofresponsibilityby Siavash Khosh Sokhan Monfared.en_US
dc.format.extent183 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectCivil and Environmental Engineering.en_US
dc.titleMicroporoelastic modeling of organic-rich shalesen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineering
dc.identifier.oclc911939352en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record