MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Locality-aware cache hierarchy management for multicore processors

Author(s)
Kurian, George, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (27.06Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Srinivas Devadas.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Next generation multicore processors and applications will operate on massive data with significant sharing. A major challenge in their implementation is the storage requirement for tracking the sharers of data. The bit overhead for such storage scales quadratically with the number of cores in conventional directory-based cache coherence protocols. Another major challenge is limited cache capacity and the data movement incurred by conventional cache hierarchy organizations when dealing with massive data scales. These two factors impact memory access latency and energy consumption adversely. This thesis proposes scalable efficient mechanisms that improve effective cache capacity (i.e., by improving utilization) and reduce data movement by exploiting locality and controlling replication. First, a limited directory-based protocol, ACKwise is proposed to track the sharers of data in a cost-effective manner. ACKwise leverages broadcasts to implement scalable cache coherence. Broadcast support can be implemented in a 2-D mesh network by making simple changes to its routing policy without requiring any additional virtual channels. Second, a locality-aware replication scheme that better manages the private caches is proposed. This scheme controls replication based on data reuse information and seamlessly adapts between private and logically shared caching of on-chip data at the fine granularity of cache lines. A low-overhead runtime profiling capability to measure the locality of each cache line is built into hardware. Private caching is only allowed for data blocks with high spatio-temporal locality. Third, a Timestamp-based memory ordering validation scheme is proposed that enables the locality-aware private cache replication scheme to be implementable in processors with out-of-order memory that employ popular memory consistency models. This method does not rely on cache coherence messages to detect speculation violations, and hence is applicable to the locality-aware protocol. The timestamp mechanism is efficient due to the observation that consistency violations only occur due to conflicting accesses that have temporal proximity (i.e., within a few cycles of each other), thus requiring timestamps to be stored only for a small time window. Fourth, a locality-aware last-level cache (LLC) replication scheme that better manages the LLC is proposed. This scheme adapts replication at runtime based on fine-grained cache line reuse information and thereby, balances data locality and off-chip miss rate for optimized execution. Finally, all the above schemes are combined to obtain a cache hierarchy replication scheme that provides optimal data locality and miss rates at all levels of the cache hierarchy. The design of this scheme is motivated by the experimental observation that both locality-aware private cache & LLC replication enable varying performance improvements across benchmarks. These techniques enable optimal use of the on-chip cache capacity, and provide low-latency, low-energy memory access, while retaining the convenience of shared memory and preserving the same memory consistency model. On a 64-core multicore processor with out-of-order cores, Locality-aware Cache Hierarchy Replication improves completion time by 15% and energy by 22% over a state-of-the-art baseline while incurring a storage overhead of 30.7 KB per core. (i.e., 10% the aggregate cache capacity of each core).
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 185-194).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/97806
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.