Show simple item record

dc.contributor.advisorKlaus-JUrgen Bathe.en_US
dc.contributor.authorYou, Soyoung, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2015-07-17T19:52:49Z
dc.date.available2015-07-17T19:52:49Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/97845
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2015.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 103-106).en_US
dc.description.abstractThe necessity for a highly accurate simulation scheme of free surface flows is emphasized in various industrial and scientific applications. To obtain an accurate response prediction, mass conservation must be satisfied. Due to a continuously moving fluid domain, however, it is a challenge to maintain the volume of the fluid while calculating the dynamic responses of free surfaces, especially when seeking solutions for long time durations. This thesis describes how the difficulty can be overcome by proper employment of an Arbitrary Lagrangian Eulerian (ALE) method derived from the Reynolds transport theorem to compute unsteady Newtonian flows including fluid interfaces and free surfaces. The proposed method conserves mass very accurately and obtains stable and accurate results with very large solution steps and even coarse meshes. The continuum mechanics equations are formulated, and the Navier-Stokes equations are solved using a 'flow-condition-based interpolation' (FCBI) scheme. The FCBI method uses exponential interpolations derived from the analytical solution of the 1-dimensional advection-diffusion equation. The thesis revisits the 2-dimensional FCBI method with special focus on the application to flow problems in highly nonlinear moving domains with interfaces and free surfaces, and develops an effective 3-D FCBI tetrahedral element for such applications. The newly developed 3-D FCBI solution scheme can solve flow problems of a wide range since it can handle highly nonlinear and unsteady flow conditions, even when large mesh distortions occur. Various example solutions are given to show the effectiveness of the developed solution schemes.en_US
dc.description.statementofresponsibilityby Soyoung You.en_US
dc.format.extent106 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleFinite element solution of interface and free surface three-dimensional fluid flow problems using flow-condition-based interpolationen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc913470683en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record