MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tunable surface topographies via particle-enhanced soft composites

Author(s)
Guttag, Mark A. (Mark Andrew)
Thumbnail
DownloadFull printable version (10.78Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Mary C. Boyce.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We introduce a new class of particle-enhanced soft composites (PESC) that can generate, on demand, custom and reversible surface topographies, with surface features that can be highly localized. These features can be specifically patterned or alternatively can be random in nature. Our PESC samples comprise a soft elastomeric matrix with stiff particles embedded below the surface. The surfaces of the samples presented in this thesis are originally smooth and flat but complex morphologies emerge under application of a stimuli (here we show application of primarily compressive loading). We demonstrate these adaptive surface topographies with both physical experiments and finite element simulations which are used to design and to study the mechanical response. A variety of different surface patterns can be attained by tailoring different dimensionless geometric parameters (e.g. different particle sizes, shapes, and distributions), as well as material properties. The design space of the system and the resulting surface topographies are explored and classified systematically. Given that our method depends primarily on the geometry of the particle arrays, our mechanism for on-demand custom surface patterning is applicable over a wide range of length scales. These surfaces can be used in a variety of different applications including control of fluid flow, adhesion, wettability and many others.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 75-76).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/97851
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Instagram YouTube

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.