Show simple item record

dc.contributor.advisorJacopo Buongiorno and Thomas McKrell.en_US
dc.contributor.authorSu, Guanyu, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Nuclear Science and Engineering.en_US
dc.date.accessioned2015-07-17T19:54:37Z
dc.date.available2015-07-17T19:54:37Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/97863
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2015.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (page 82).en_US
dc.description.abstractConduction and single-phase convective heat transfer are well understood phenomena: analytical models [1] and empirical correlations [2] allow capturing the thermal behavior of plate-type fuels or heaters in contact with a single-phase coolant. On the other hand, transient boiling heat transfer is a scarcely studied and much less understood phenomenon. Although, earlier studies have shown that important features of the boiling curve (i.e. onset of nucleate boiling (ONB), nucleate boiling heat transfer coefficient, and critical heat flux (CHF)) in transient conditions. These parameters significantly differ from those at steady-state. The mechanisms by which these changes occur are not clear. Furthermore, some of the conclusions from different authors are quantitatively or qualitatively in disagreement with each other. This work studied transient pool boiling heat transfer phenomena under exponentially escalating heat fluxes on plate-type heaters, at the time scales of milliseconds typical of Reactivity Initiated Accidents (RIAs) in nuclear reactors. The investigation utilized state-of-the-art diagnostics such as Infrared (IR) thermometry and high-speed video (HSV), to gain insight into the physical phenomena and generate a database that could be used for development and validation of accurate models for transient boiling heat transfer. The tests with exponential power escalation periods ranging from 100 ms to 5 ms and subcoolings of OK (saturation), 25K and 75 K were conducted. The measured pre-ONB heat transfer coefficient agrees well with the theoretical predictions for transient conduction. The ONB and onset of significant void (OSV) temperature and heat flux were found to increase monotonically with decreasing period and increasing subcooling, as expected. The mechanistic ONB model of Hsu was able to predict the measured ONB temperature and heat flux. The transient pool boiling curves were measured up to fully developed nucleate boiling (FDNB). Generally two types of boiling curve were observed: with overshoot (OV) or without overshoot. Data show that, when an OV is present, the OV temperature increases monotonically with decreasing period and increasing subcooling. The present study clears the confusions (eg. the trend of ONB temperature and heat flux versus power period) in previous research, and sheds light to the mechanisms behind transient boiling heat transfer. This can ultimately reduce the uncertainty in both design and safety analyses of the research reactors especially under RIAs.en_US
dc.description.statementofresponsibilityby Guanyu Su.en_US
dc.format.extent97 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectNuclear Science and Engineering.en_US
dc.titleExperimental study of transient pool boiling heat transfer under exponential power excursion on plate-type heateren_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineering
dc.identifier.oclc913785590en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record