MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The climate time scale in the approach to radiative-convective equilibrium

Author(s)
Emanuel, Kerry Andrew; Cronin, Timothy Wallace
Thumbnail
DownloadEmanuel_The climate time.pdf (540.0Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
In this paper, we discuss the importance of the surface boundary condition (fixed versus interactive surface temperature) for the long time scale of approach to Radiative-Convective Equilibrium (RCE). Using a simple linearized two-variable model for surface-atmosphere interaction, we derive an analytic expression for τ[subscript C], a long climate relaxation time scale that remains well defined and much longer than either mixing time scale of Tompkins and Craig (1998b), even in the limit that the heat capacity of the surface vanishes. We show that the size of τ[subscript C] is an intrinsic property of the coupling between the atmosphere and surface, and not a result of the thermal inertia of the surface alone. When the surface heat capacity is low, τ[subscript C] can be several times longer than expected, due to the effects of moisture on the effective heat capacity of the atmosphere. We also show that the theoretical expression for τ[subscript C] is a good predictor of best fit exponential relaxation time scales in a single-column model with full physics, across a range of surface temperatures and surface heat capacities.
Date issued
2013-10
URI
http://hdl.handle.net/1721.1/97933
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences; Massachusetts Institute of Technology. Program in Atmospheres, Oceans, and Climate; Woods Hole Oceanographic Institution
Journal
Journal of Advances in Modeling Earth Systems
Publisher
American Geophysical Union (AGU)
Citation
Cronin, Timothy W., and Kerry A. Emanuel. “The Climate Time Scale in the Approach to Radiative-Convective Equilibrium.” Journal of Advances in Modeling Earth Systems 5, no. 4 (October 29, 2013): 843–849. © 2013 American Geophysical Union
Version: Final published version
ISSN
19422466

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.