Show simple item record

dc.contributor.advisorHoward J. Herzog.en_US
dc.contributor.authorClark, Victoria (Victoria Reeves)en_US
dc.contributor.otherMassachusetts Institute of Technology. Technology and Policy Program.en_US
dc.date.accessioned2015-09-17T17:42:05Z
dc.date.available2015-09-17T17:42:05Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/98552
dc.descriptionThesis: S.M. in Technology and Policy, Massachusetts Institute of Technology, Engineering Systems Division, 2015.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 96-106).en_US
dc.description.abstractTo be on track to stabilize climate change, scientists estimate that up to two thirds of global coal, oil, and natural gas reserves will need to remain stranded in the ground. Carbon capture and storage (CCS) is the only technology that has the potential to mitigate climate change while utilizing these potentially stranded fossil fuel assets. The Intergovernmental Panel on Climate Change (IPCC), International Energy Agency (IEA), and other international expert organizations see CCS playing a large role in the mix of climate mitigation technologies, but deployment has been slow. In light of the expected role of CCS and current limited deployment, this thesis explores the political and financial incentives that can further drive funding and implementation of CCS projects and evaluates the role of CCS in rescuing potentially stranded fossil fuel assets. This thesis includes three detailed analyses: (1) an evaluation of proposed command-and-control regulations from the US EPA for new and existing fossil fuel-fired power plants; (2) cases studies of how two successful CCS projects, Boundary Dam in Canada and Gorgon in Australia, were incentivized; and (3) an analysis of results from the AMPERE modeling study to estimate the global scale and value of stranded fossil fuel assets. From these analyses, five key conclusions are drawn. (1) CCS has the potential to rescue substantial coal, natural gas and oil assets and has the potential to hugely reduce global mitigation costs compared to a scenario without CCS. (2) The design of policy is crucial for CCS. Carbon pricing mechanisms must have a price high enough to incentivize CCS; command-and-control policies must not create loopholes for lower cost technologies; and financial incentives must provide sufficient funds, flexibility, and time to complete projects. (3) The role of bioenergy with CCS (BECCS) in top-down climate stabilization scenarios needs to be better understood, as these models seem to be overly optimistic regarding BECCS. (4) On an individual project level, stranded assets have the most value when there is no viable substitute available (e.g., transportation fuels) or when the fuel user also owns the asset (e.g., utility-owned lignite). (5) CCS on fuel production processes (e.g. oil refining and natural gas processing) are easier to finance than fuel utilization processes (e.g. power generation and cement production), but power plants remain the biggest potential market for CCS if it is to become a major climate mitigation technology.en_US
dc.description.statementofresponsibilityby Victoria Clark.en_US
dc.format.extent115 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEngineering Systems Division.en_US
dc.subjectTechnology and Policy Program.en_US
dc.titleAn analysis of how climate policies and the threat of stranded fossil fuel assets incentivize CCS deploymenten_US
dc.typeThesisen_US
dc.description.degreeS.M. in Technology and Policyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Division
dc.identifier.oclc920674660en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record