Show simple item record

dc.contributor.advisorMary C. Boyce and Christine Ortiz.en_US
dc.contributor.authorLin, Erica (Erica S. C.)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Materials Science and Engineering.en_US
dc.date.accessioned2015-09-17T17:44:01Z
dc.date.available2015-09-17T17:44:01Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/98580
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2015.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 90-93).en_US
dc.description.abstractNature is filled with incredible examples of multi-functional materials that have evolved to possess tailored mechanical behavior. This thesis explores the structure-function-property relationship and design principles of geometrically-structured suture interfaces and composites. Suture interfaces are mechanical structures found in rigid natural materials (e.g. human skulls, turtle shells, seashells) that bear loads and provide flexibility for respiration and growth. The geometry of suture interfaces has been shown to vary within species, across species, through development, and over time as organisms evolve. Using mechanical testing of 3D-printed, bio-inspired prototypes, finite element simulations, and analytical modeling, this thesis offers a systematic, comprehensive understanding of the relationship between suture interface geometry and mechanical behavior and provides insight into the suture interface geometries that exist in nature. Triangular, general trapezoidal, and hierarchical suture interfaces and composites are designed, fabricated, and tested. The stiffness, strength, toughness, and failure mechanisms of suture interfaces are shown to be directly influenced by suture geometry. Therefore, mechanical behavior of suture interfaces can be tailored or amplified through small changes in geometry. In addition, the bending behavior of suture composites can also be tailored through changes in suture interface geometry. With a detailed understanding of the deformation mechanisms of suture composites, optimal, multi-scale, hierarchical geometries can be designed.en_US
dc.description.statementofresponsibilityby Erica Lin.en_US
dc.format.extent95 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titleBio-inspired design of geometrically-structured suture interfaces and compositesen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc920882612en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record