Show simple item record

dc.contributor.advisorDaniel E. Hastings.en_US
dc.contributor.authorPutbrese. Benjamin Len_US
dc.contributor.otherMassachusetts Institute of Technology. Technology and Policy Program.en_US
dc.date.accessioned2015-09-17T18:59:01Z
dc.date.available2015-09-17T18:59:01Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/98603
dc.descriptionThesis: S.M. in Technology and Policy, Massachusetts Institute of Technology, Engineering Systems Division, Technology and Policy Program, 2015.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 165-173).en_US
dc.description.abstractThe space industry is currently at a significant inflection point. New economies are forming in low- Earth orbit (LEO), driven by miniaturization of technologies and the promise of lower launch costs, which should then allow many of these LEO systems to capitalize on designs incorporating smaller, shorter-lived spacecraft in highly-disaggregated constellations. Meanwhile, many spacecraft at geosynchronous orbit are continuing along a trend towards increasingly massive and longer-lasting satellites, and while they do represent some of the most exquisite, highest-performing satellites ever launched, some experts now feel that such trends are unsustainable and are beginning to place increasing strain on the underlying industry. To support current and future spacecraft, orbital infrastructures have been proposed as a means of providing on-orbit services to customer spacecraft and guiding space architectures towards more sustainable paradigms. In LEO, an infrastructure of communications and data relay spacecraft is envisioned as a means of aiding new and existing space enterprises in the areas of satellite connectivity and downlink capability. Meanwhile, an on-orbit servicing (OOS) infrastructure, located primarily in geosynchronous orbit, would provide services such as repair, rescue, refueling, and upgrading of customer spacecraft, in order to alleviate the identified space industry trends. Physics and cost modeling, as well as tradespace exploration, are used to identify optimal LEO infrastructure designs, while system dynamics modeling is used to assess the trends likely to occur in the overall space industry as OOS is incorporated into space architectures. The primary conclusion from the analysis of LEO infrastructure designs is that, when designing for global connectivity, there is an optimal design point between a small constellation of larger spacecraft and a very large constellation of small spacecraft, but this will also depend on the intended mission of the infrastructure and the number of customers expecting to be serviced. Then, for an OOS infrastructure, it is determined that relatively low costs and heavy incorporation of servicing capabilities into customer architectures are needed to ensure long-term sustainability of such a project. Finally, the policy implications for both infrastructure concepts are discussed, with a heavy focus on options for the funding and development regimes employed to implement the infrastructures, as well as the major political and legal implications expected to accompany these projects.en_US
dc.description.statementofresponsibilityby Benjamin L. Putbrese.en_US
dc.format.extent173 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEngineering Systems Division.en_US
dc.subjectTechnology and Policy Program.en_US
dc.titleExploring design and policy options for orbital infrastructure projectsen_US
dc.typeThesisen_US
dc.description.degreeS.M. in Technology and Policyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Division
dc.contributor.departmentTechnology and Policy Program
dc.identifier.oclc920470038en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record