MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mechanical and electrical characterization of carbon Black-doped closed-cell Polydimethylsiloxane (PDMS) foam

Author(s)
Herring, Jessica A
Thumbnail
DownloadFull printable version (12.17Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Materials Science and Engineering.
Advisor
Jeffrey Lang.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Carbon Black-doped Polydimethylsiloxane (CB-PDMS) can be used as a pressure sensing material due to its piezoresistive properties. The sensitivity of such a sensor is in part dependent on the stiffness of the material. A closed-cell CB-PDMS foam is being explored as a possible flexible, lightweight, and waterproof underwater sensing material for use in unmanned underwater vehicles and other hydrodynamic sensing purposes. The percolation threshold for conduction through the CB-PDMS foam is theorized, and a number of different concentrations based on the theorized threshold are explored in order to determine the optimum weight percent of Carbon Black dopant to achieve a high sensitivity, low stiffness sensing CB-PDMS foam. Sinusoidal mechanical pressure patterns were applied and voltage response measured. An optimum dopant weight percent out of the concentrations tested was found at 5.5 wt% CB-PDMS.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 51-52).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/98652
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.