Show simple item record

dc.contributor.advisorRichard E. Stoner, Paulo C. Lozano and Vladan Vuletic.en_US
dc.contributor.authorKotru, Krishen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.date.accessioned2015-09-17T19:04:29Z
dc.date.available2015-09-17T19:04:29Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/98681
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2015.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 165-173).en_US
dc.description.abstractLight pulse atom interferometry (LPAI) is a powerful technique for precision measurements of inertial forces and time. Laboratory LPAI systems currently achieve state-ofthe- art acceleration sensitivity and establish the international atomic time standard. However, the realization of practical LPAI in dynamic environments (e.g., rapidly accelerating or rotating platforms) has been limited in part by atom optics-the analogues to optical beamsplitters and mirrors. Atom optics in traditional LPAIs are composed of resonant laser pulses that are susceptible to variations in optical detuning and intensity expected in sensors designed for dynamic environments. This thesis investigates atom optics that use frequency- and intensity-modulated laser pulses to suppress sensitivity to these inhomogeneities. For atomic timekeeping applications, a Ramsey LPAI sequence based on stimulated Raman transitions and frequency-swept adiabatic rapid passage (ARP) was developed. Raman ARP drives coherent transfer in an effective two-level atomic system by sweeping the Raman detuning through the two-photon resonance. In experiments with ¹³³Cs atoms, Raman ARP reduced the sensitivity of Ramsey sequences to differential AC Stark shifts by about two orders of magnitude, relative to standard Raman transitions. Raman ARP also preserved fringe contrast despite substantial intensity inhomogeneity. The fractional frequency uncertainty of the ARP Ramsey sequence was limited by second-order Zeeman shifts to ~3.5 x 10-¹² after about 2500 s of averaging. For accelerometry applications, Raman ARP provided efficient, large momentum transfer (LMT) atom optics in an acceleration-sensitive LPAI. These atom optics produced momentum splittings of up to 30 photon recoil momenta between interfering wavepackets-the largest to date for Raman atom optics. This splitting, in principle, enables up to a factor-of-15 improvement in sensitivity over the nominal interferometer. By forgoing cooling methods that reduce atom number, this LMT method reduces the measurement uncertainty due to atom shot-noise and enables large area atom interferometry at higher data-rates. These features could prove useful for fielded inertial sensors based on atom interferometry.en_US
dc.description.statementofresponsibilityby Krish Kotru.en_US
dc.format.extent173 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleTimekeeping and accelerometry with robust light pulse atom interferometersen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.identifier.oclc920684987en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record