Show simple item record

dc.contributor.advisorChoon S. Tan and Borislav T. Sirakov.en_US
dc.contributor.authorLee, Jinwook, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.date.accessioned2015-09-17T19:05:15Z
dc.date.available2015-09-17T19:05:15Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/98692
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2015.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 133-135).en_US
dc.description.abstractAn assessment of a turbine system operating under highly pulsating flow environment typically found in vehicular turbochargers is made to: identify the key operating parameters, enable the formulation of a reduced order model, delineate the sources of loss and suggest strategies for performance improvement. The turbine system consists of a scroll-volute followed by a turbine wheel and then a diffuser. The assessment includes calculating unsteady three-dimensional flow in the turbine system followed by in-depth interrogation complemented with flow modeling. The key findings are (1) The flow mechanisms behind the turbine wheel performance, the diffuser loss and the wastegate port loss appear locally quasi-steady such that we can characterize the performance of the components based on a series of steady calculations subjected to varying inlet conditions reflecting the inlet flow pulsation; (2) the operation of scroll-volute and the diffuser pressure recovery can be adequately determined using a quasi-one-dimensional unsteady flow model; (3) A significant fraction of the loss that is not from skin frictions occurs downstream of turbine wheel exit (18%pts out of 34%pts in Peak Torque and 20%pts out of 56%pts in Turbo Initial Transient based on cycle loss debit); (4) The condition of maximum power extraction on unsteady pulsating environment can be approximated with a simple modeling of volute storage effect. A physically consistent definition of ideal power that elucidates the role of unsteadiness in an unsteady turbine system is derived; it informs one on what the extractable power is compared to what it could be for an ideal system. Finally the findings are used to define the required attributes of methodology for estimating efficiency with a specified uncertainty bandwidth.en_US
dc.description.statementofresponsibilityby Jinwook Lee.en_US
dc.format.extent135 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleAerothermodynamics and operation of turbine system under unsteady pulsating flowen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.identifier.oclc920688212en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record