MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling and design of material recovery facilities : genetic algorithm approach

Author(s)
Testa, Mariapaola
Thumbnail
DownloadFull printable version (17.25Mb)
Alternative title
Material recovery facilities : genetic algorithm approach
Other Contributors
Massachusetts Institute of Technology. Operations Research Center.
Advisor
Stephen C. Graves.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In the Organisation for Economic Co-operation and Development (OECD) area, the production of numerical solid waste (MI\SW) increased by 32% between 1990 and 2011, exceeding 660 million tonnes in 2011; the world-wide production of waste is estimated to grow further due to increasing GDP in developing economies. Given this scenario, effective treatment and recovery of wastes becomes a priority. In developed countries, MSW is usually sent to materials recovery facilities (MRFs), which use mechanical and manual sorting units to extract valuable components. In this work, we define a network flow model to represent a MRF that sorts wastes using multi-output units with recirculating streams. For each material in the system, we define a matrix to describe the sorting process. We then formulate a genetic algorithm (GA) that generates alternative configurations of a MRF having a given set of sorting units with known separation parameters and selects those with highest profit and efficiency. The GA incorporates a heuristic for personnel allocation to manual units. We code the algorithm in Java and apply it to an existing MRF. The results show a 33.4% improvement in profit and a 1.7% improvement in efficiency with respect to the current configuration without hand sorting; and a 6.7% improvement in profit and a 3.9% improvement il efficiency, with respect to the current configuration with hand sorting.
Description
Thesis: S.M., Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 187-193).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/98715
Department
Massachusetts Institute of Technology. Operations Research Center; Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Operations Research Center.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.