MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Anomaly detection methods for unmanned underwater vehicle performance data

Author(s)
Harris, William Ray
Thumbnail
DownloadFull printable version (10.74Mb)
Other Contributors
Massachusetts Institute of Technology. Operations Research Center.
Advisor
Michael J. Ricard and Cynthia Rudin.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis considers the problem of detecting anomalies in performance data for unmanned underwater vehicles(UUVs). UUVs collect a tremendous amount of data, which operators are required to analyze between missions to determine if vehicle systems are functioning properly. Operators are typically under heavy time constraints when performing this data analysis. The goal of this research is to provide operators with a post-mission data analysis tool that automatically identifies anomalous features of performance data. Such anomalies are of interest because they are often the result of an abnormal condition that may prevent the vehicle from performing its programmed mission. In this thesis, we consider existing one-class classification anomaly detection techniques since labeled training data from the anomalous class is not readily available. Specifically, we focus on two anomaly detection techniques: (1) Kernel Density Estimation (KDE) Anomaly Detection and (2) Local Outlier Factor. Results are presented for selected UUV systems and data features, and initial findings provide insight into the effectiveness of these algorithms. Lastly, we explore ways to extend our KDE anomaly detection algorithm for various tasks, such as finding anomalies in discrete data and identifying anomalous trends in time-series data.
Description
Thesis: S.M., Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 101-102).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/98718
Department
Massachusetts Institute of Technology. Operations Research Center; Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Operations Research Center.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.