MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Materials Science and Engineering
  • Materials Science and Engineering - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Materials Science and Engineering
  • Materials Science and Engineering - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Study on the photoelectric hot electrons generation and transport with metallic-semiconductor photonic crystals

Author(s)
Wang, Yu
Thumbnail
DownloadFull printable version (6.085Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Materials Science and Engineering.
Advisor
Sang Gook Kim.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Photoelectric hot carrier generation in metal-semiconductor junctions allows for optical-to- electrical energy conversion at photon energies below the bandgap of the semiconductor. Which opens new opportunities in optical sensors and energy conversion devices. In this thesis research, the wafer-scale metallic-semiconductor photonic crystal (MSPhC) has been designed for photoelectric hot electrons collection. The periodic nano-cavities structure of MSPhC supports various optical modes that can resonate with light in broad wavelength region. Optical simulation and experimental results of MSPhC have been demonstrated. The simulation results shows MSPhC can achieve up to 70% absorption in the solar radiation range, with ultra-thin metal film. Experimentally, MSPhC has fabricated via 6" Si wafer scalable microfabrication techniques. A broadband sub-bandgap hot electron response with a full width at half maximum (FWHM) of 235 nm centered at 590 nm is observed. Photoresponse enhancement factor of 12.28 at 639 nm compared to a flat chip is also measured. Applications of these results could lead to low-cost and robust photoelectrochemical device such as full-spectrum solar water splitting.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 47-50).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/98730
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering.
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Materials Science and Engineering - Master's degree
  • Materials Science and Engineering - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.