MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Time-optimal path planning in uncertain flow fields using stochastic dynamically orthogonal level set equations

Author(s)
Wei, Quantum Jichi
Thumbnail
DownloadFull printable version (5.174Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Pierre F.J. Lermusiaux.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Path-planning has many applications, ranging from self-driving cars to flying drones, and to our daily commute to work. Path-planning for autonomous underwater vehicles presents an interesting problem: the ocean flow is dynamic and unsteady. Additionally, we may not have perfect knowledge of the ocean flow. Our goal is to develop a rigorous and computationally efficient methodology to perform path-planning in uncertain flow fields. We obtain new stochastic Dynamically Orthogonal (DO) Level Set equations to account for uncertainty in the flow field. We first review existing path-planning work: time-optimal path planning using the level set method, and energy-optimal path planning using stochastic DO level set equations. We build on these methods by treating the velocity field as a stochastic variable and deriving new stochastic DO level set equations. We use the new DO equations to simulate a simple canonical flow, the stochastic highway. We verify that our results are correct by comparing to corresponding Monte Carlo results. We explore novel methods of visualizing the results of the equations. Finally we apply our methodology to an idealized ocean simulation using Double-Gyre flows.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 53-54).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/98749
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.