Show simple item record

dc.contributor.advisorKen Kamrin.en_US
dc.contributor.authorSlonaker, James (James C.)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2015-09-17T19:10:37Z
dc.date.available2015-09-17T19:10:37Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/98765
dc.descriptionThesis: S.B., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2015.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (page 91).en_US
dc.description.abstractThe application of Resistive Force Theory to further understand the dynamics of wheeled locomotion through granular materials was explored. Resistive Force Theory is a new terradynamic model that simplifies the calculation of the forces applied to bodies moving through granular media because it utilizes linear superposition and is easily scalable to any material of interest. First, a MATLAB simulation was created to test different wheel designs rotating through sand. The designs tested include a four-spoke design, consisting of four treads that have a hinge halfway down their length set to a specific angle, and a "superball" design, consisting of different solid shapes defined by the "superball" equation. The average velocity and power were found for each case to find an optimal design. It was found that four-spoke designs with an angle 6 < 1800 were optimal as they reached the highest velocities, while requiring the least power. Next, dimensional analysis was performed to find a global scaling relationship for the RFT wheel designs. Scaling laws for the power and velocity were found that allow different wheel designs and conditions to be simulated with an entirely new system. Using the simulation, it was found that the scaling law for a tire rotating on Mars could be tested on Earth up to a high degree of accuracy. Physical experiments, using 3D printed wheels and a sand testing bed, were carried out to further validate the scaling relationship. Both four-spoke and "superball" designs were tested and seem to show the general scaling trend expected.en_US
dc.description.statementofresponsibilityby James Slonaker.en_US
dc.format.extent91 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleWheel design optimization for locomotion in granular beds using resistive force theoryen_US
dc.typeThesisen_US
dc.description.degreeS.B.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc920901962en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record