MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A buffer gas cooled molecular beam apparatus for chirped pulse millimeter wave spectroscopy

Author(s)
Klein, Ethan Avram
Thumbnail
DownloadFull printable version (4.793Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Chemistry.
Advisor
Robert W. Field.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
An apparatus that utilizes buffer gas cooling to produce slow atomic (Ba, Ca) and molecular (BaF, CaF) beams is constructed. In-cell temperatures of 20 ± 0.25K are achieved with chamber cooldown times of under two hours. Laser Induced Fluorescence (LIF) spectra of BaF and CaF confirmed thermalization of the molecular beam to the temperature of the buffer gas and additional hydrodynamic cooling to rotational and translational temperatures under 10K. Laser fluence effects on the intensity of barium and calcium ablation were studied and used to optimize laser parameters for maximum ablation of the desired species. A chirped pulse millimeter wave (CPmmW) setup was combined with the buffer gas cooling apparatus for combined laser and millimeter wave spectroscopy experiments of Rydberg states. LabVIEW programming is used for an internal temperature feedback system, raster scanning of the ablation target, as well as millimeter wave FID signal digital acquisition. Use of the apparatus for chirped pulse microwave spectroscopy of buffer gas cooled beams have led to orders of magnitude improvement in both the resolution and the reduction of time required to record molecular Rydberg spectra.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Chemistry, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 34-36).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/98781
Department
Massachusetts Institute of Technology. Department of Chemistry
Publisher
Massachusetts Institute of Technology
Keywords
Chemistry.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.