Chiral phosphine-catalyzed asymmetric transformations of allenoates and alkynoates and photoinduced, copper-catalyzed C-N couplings with aromatic nitrogen ceterocycles
Author(s)
Ziegler, Daniel Todd
DownloadFull printable version (10.32Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Chemistry.
Advisor
Gregory C. Fu.
Terms of use
Metadata
Show full item recordAbstract
Chapter 1 describes the development of chiral biphenyl-derived phosphepines and their application as catalysts for an asymmetric [4 + 1] annulation to form functionalized cyclopentenes bearing a non-spirocyclic quaternary stereocenter. Additional studies demonstrate the synthetic utility of the cyclopentene products for further stereoselective functionalization and provide insight into the mechanism of the reaction. Chapter 2 describes the development of photoinduced, copper-catalyzed C-N couplings between aromatic nitrogen heterocycles (i.e., indole, benzimidazole, imidazole, and carbazole) and aryl, alkenyl, and alkynyl halides. These reactions utilize an inexpensive catalyst (Cul, without an additional ligand) and proceed at unusually low temperature for Ullmann coupling processes with these heterocycles (room temperature). Additional studies probe the selectivity of the reaction with respect to both the nucleophilic and the electrophilic coupling partner. Chapter 3 details progress towards developing a method for asymmetric, intermolecular y additions of oxygen nucleophiles to alkynoates using a chiral phosphine catalyst. Conditions are presented that effectively couple alkynoates bearing an aryl substituent at the y position with a variety of alcohols in good yield and high ee. Future efforts will be focused on expanding the scope of this process and conducting experiments to gain insight into the reaction mechanism.
Description
Thesis: Ph. D. in Organic Chemistry, Massachusetts Institute of Technology, Department of Chemistry, 2015. Vita. Cataloged from PDF version of thesis. Includes bibliographical references.
Date issued
2015Department
Massachusetts Institute of Technology. Department of ChemistryPublisher
Massachusetts Institute of Technology
Keywords
Chemistry.