MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Manipulating Conjugation in electronic polymers and graphitic materials: chemosensors, precursor routes, and self-assembly

Author(s)
Weis, Jonathan G. (Jonathan Garrett)
Thumbnail
DownloadFull printable version (26.01Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Chemistry.
Advisor
Timothy M Swager.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In Chapter 1, we synthesize dithienobenzotropone-based conjugated alternating copolymers by direct arylation polycondensation. Post-polymerization hydride reduction furnishes cross-conjugated copolymeric hydrogels that undergo phosphorylation and subsequent ionization upon exposure to chemical warfare agent (CWA) mimics. The resulting conjugated, cationic copolymer is intensely colored and facilitates spectroscopic and colorimetric detection of CWA mimics in solution and as a thin film. Similarly, we report the incorporation of CWA-responsive units into random copolymers prepared by ringopening metathesis polymerization (ROMP) to create highly modular, chromogenic thin films. In Chapter 2, we explore homoconjugated polynorbornadienes possessing various electron-withdrawing groups as polymeric precursors to electron-accepting poly(cyclopentadienylene vinylene) derivatives. Tungsten oxo alkylidene catalysts were utilized to polymerize a variety of 7-isopropylidene- and 7-oxa-2,3-disubstituted norbornadienes in a cis-highly tactic fashion by ROMP. We further demonstrate the excellent scope of tungsten oxo complexes by polymerizing norbornadienes that are unreactive with traditional molybdenum-, tungsten-, and ruthenium-based catalysts. In Chapter 3, we employ atomic force microscopy (AFM) and scanning tunneling microscopy (STM) to examine graphene oxide (GO) samples with gradations of (de)oxygenation. We analyze the roughness of the apparent height in STM topographic measurements - i.e. the "apparent roughness" - and report a correlation between increasing deoxygenation and decreasing surface roughness. The "apparent roughness" therefore serves as a supplemental technique for analyzing samples of GO. Furthermore, we report the first example of using an STM tip to locally reduce GO without local destruction of the graphene sample. In Chapter 4, we exploit the extraordinary self-recognition properties of deoxyribonucleic acid (DNA) to assemble single-walled carbon nanotubes (SWCNTs) in a controllable manner. Networks of SWCNTs with three-way junctions could be constructed in solution or sequentially on a surface. We envision that more complex nanoscale architectures and circuits can be prepared in this bottom-up manner. In Chapter 5, we introduce halogen bonding in SWCNT-based chemiresistive gas sensors. These chemiresistors were prepared by ball milling of SWCNTs and selectors, compression into a pellet, and mechanical abrasion between gold electrodes on paper. We demonstrate that sensing responses reflect halogen bonding trends, with some exceptions. The predominant signal transduction mechanism is likely attributed to swelling of the insulating haloarene matrix.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemistry, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/98786
Department
Massachusetts Institute of Technology. Department of Chemistry
Publisher
Massachusetts Institute of Technology
Keywords
Chemistry.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.