Show simple item record

dc.contributor.advisorJacquin C. Niles.en_US
dc.contributor.authorAbshire, James R. (James Robbins)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Biological Engineering.en_US
dc.date.accessioned2015-09-29T18:08:56Z
dc.date.available2015-09-29T18:08:56Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/98921
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Biological Engineering, 2015.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractMalaria remains a major burden to global public health. Antimalarial drugs are a mainstay in efforts to control and eventually eradicate this disease. However, increasing drug resistance threatens to reverse recent gains in malaria control, making the discovery of new antimalarials critical. Antimalarial discovery is especially challenging due to the unique biology of malaria parasites, the scarcity of tools for identifying new drug targets, and the poorly understood mechanisms of action of existing antimalarials. Therefore, this work describes the development of two chemical biology tools to address unmet needs in antimalarial drug discovery. A particular challenge in antimalarial development is a shortage of validated parasite drug targets. Potent antimalarials with demonstrated clinical efficacy, like the aminoquinolines and artemisinins, represent a promising basis for rational drug development. Unfortunately, the molecular targets of these drugs have not been identified. While both are thought to interact with parasite heme, linking in vitro heme binding with drug potency remains challenging because labile heme is difficult to quantify in live cells. This work presents a novel genetically-encoded heme biosensor and describes its application to quantify labile heme in live malaria parasites and test mechanisms of antimalarial action. Another challenge is posed by the widespread malaria parasite Plasmodium vivax, which, unlike P. falciparum, cannot be propagated in vitro, hindering research into parasite biology and drug target identification. P. vivax preferentially invades reticulocytes, which are impractical to obtain in continuous supply. The basis for this invasion tropism remains incompletely understood, mainly because current tools cannot directly link molecular binding events to invasion outcomes. This work presents novel methods for immobilizing synthetic receptors on the red blood cell surface. These receptors are used in proof-of-concept experiments to investigate requirements for efficient invasion via a well-characterized P. falciparum invasion pathway, suggesting this method can be used to elucidate molecular mechanisms underlying parasite invasion tropisms. Future receptor designs could promote the invasion of P. vivax into mature red blood cells and potentially facilitate practical in vitro culture. Taken together, these tools present new opportunities for drug discovery to aid efforts in malaria control and eventual eradication.en_US
dc.description.statementofresponsibilityby James R. Abshire.en_US
dc.format.extent117 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectBiological Engineering.en_US
dc.titleDevelopment of novel chemical biology tools to probe malaria parasite physiology and aid in antimalarial drug discoveryen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineering
dc.identifier.oclc921843586en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record