MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Mechanical Engineering
  • Mechanical Engineering - Bachelor's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Mechanical Engineering
  • Mechanical Engineering - Bachelor's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rotational movement of a harbor seal whisker during vortex induced vibrations

Author(s)
Hildner, Matthew (Matthew R.)
Thumbnail
DownloadFull printable version (10.90Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Michael S. Triantafyllou.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Harbor seal whiskers have geometry that reduces vortex induced vibrations. Previous experiments with rigid models of the harbor seal whiskers has shown that the reduced vibration of the whisker can be used to detect the wake of other objects in water. This project focused on expanding the experiments done with the rigid whisker by adding the ability to rotate to the whisker. A rubber whisker was used to explore the response of a fully flexible whisker as it was dragged through water and tracked optically. This was compared with the results from previous experiments. Then a new rigid whisker sensor was created that allowed the whisker to rotate as well as vibrate. Experiments with this whisker holding it to rotation only, rotation with spring force, and rotation with vibration showed that the whisker experienced the effects of the Munk moment at higher speeds when allowed to vibrate, also the rotational vibration of the whisker was noisy except when allowed to vibrate in the crossflow direction. Further work could be done to improve the capability to detect the rotational position of the rigid whisker without introducing excess friction to the system.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (page 69).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/98968
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Mechanical Engineering - Bachelor's degree
  • Mechanical Engineering - Bachelor's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.