MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Understanding supply chain trade-offs through models and scenario planning with a focus on postponement

Author(s)
Kafka, Concepcion Alexandra
Thumbnail
DownloadFull printable version (9.121Mb)
Other Contributors
Leaders for Global Operations Program.
Advisor
Daniel Whitney and Donald Rosenfield.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The two objectives of this project were to develop an understanding of the challenges and opportunities of the supply chain of a family of currently marketed products manufactured overseas and distributed/sold worldwide and to increase the agility of the supply chain while achieving a target service level of 99% and maintaining or decreasing costs. A model was created to explore the current supply chain as well as the idea of supply chain agility through the implementation of postponement as models can easily be used to understand the cause and effect relationships through the ability to analyze any number of possible outcomes in a time and cost effective manner. Monthly demand and forecast data was analyzed to determine if there were in biases in the forecasts and to understand the relation between demand and forecast error through the use of a power law model. The forecast and demand data demonstrated a strong log-log relationship between RMSE and demand implying that there are economies of scale when demand is aggregated. The model shows that the implementation of postponement can reduce overall inventory levels, leading to decreased supply chain costs (if the cost of implementing postponement is less than the savings achieved through the inventory decrease). In looking at air versus ocean transport, the savings coming from inventory reduction due to decreasing lead times outweighed the increase in costs for both supply chain designs. As expected, increasing forecast accuracy leads to a decrease in safety stocks while decreasing forecast accuracy leads to an increase. Finally, increasing demand lead to increasing safety stocks and costs while decreasing demand had the opposite effect. For the forecast accuracy and changing demand scenarios there is a larger magnitude of savings for the current design of the supply chain than for one with postponement.
Description
Thesis: M.B.A., Massachusetts Institute of Technology, Sloan School of Management, 2015. In conjunction with the Leaders for Global Operations Program at MIT.
 
Thesis: S.M., Massachusetts Institute of Technology, Engineering Systems Division, 2015. In conjunction with the Leaders for Global Operations Program at MIT.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 65-66).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/99006
Department
Leaders for Global Operations Program at MIT; Massachusetts Institute of Technology. Engineering Systems Division; Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Sloan School of Management., Engineering Systems Division., Leaders for Global Operations Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.