Show simple item record

dc.contributor.advisorAngela M. Belcher.en_US
dc.contributor.authorCasey, John P., Jren_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Biological Engineering.en_US
dc.date.accessioned2015-09-29T19:00:23Z
dc.date.available2015-09-29T19:00:23Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/99052
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Biological Engineering, 2015.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 107-119).en_US
dc.description.abstractBiocatalysis has grown rapidly in recent decades as a solution to the evolving demands of industrial chemical processes. Mounting environmental pressures and shifting supply chains underscore the need for novel chemical activities, while rapid biotechnological progress has greatly increased the utility of enzymatic methods. Enzymes, though capable of high catalytic efficiency and remarkable reaction selectivity, still suffer from relative instability, high costs of scaling, and functional inflexibility. Herein, M13 bacteriophage libraries are engineered as a biochemical platform for de novo semisynthetic enzymes, functionally modular and widely stable. Carbonic anhydrase-inspired hydrolytic activity via Zn²+ coördination is first demonstrated. The phage clone identified hydrolyzes a range of carboxylic esters, is active from 25°C to 80°C, and displays greater catalytic efficacy in DMSO than in water. Reduction-oxidation activity is subsequently developed via heme and copper cofactors. Heme-phage complexes oxidize multiple peroxidase substrates in a pH-dependent manner. The same phage clone also binds copper(II) and oxidizes a catechol derivative, di-tert-butylcatechol, using atmospheric oxygen as a terminal oxidant. This clone could be purified from control phage via Cu-NTA columns, enabling future library selections for phage that coördinate Cu²+ ions. The M13 semisynthetic enzyme platform complements biocatalysts with characteristics of heterogeneous catalysis, yielding high-surface area, thermostable biochemical structures readily adaptable to reactions in myriad solvents. As the viral structure ensures semisynthetic enzymes remain linked to the genetic sequences responsible for catalysis, future work could tailor the biocatalysts to high-demand synthetic processes by evolving new activities, utilizing high-throughput screening technology and harnessing M13's multifunctionality.en_US
dc.description.statementofresponsibilityby John P. Casey, Jr.en_US
dc.format.extent119 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectBiological Engineering.en_US
dc.titleCapsid catalysis : de novo enzymes on viral proteinsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineering.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineering
dc.identifier.oclc921844972en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record