MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sparse regularity and relative Szemerédi theorems

Author(s)
Zhao, Yufei
Thumbnail
DownloadFull printable version (10.08Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mathematics.
Advisor
Jacob Fox.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We extend various fundamental combinatorial theorems and techniques from the dense setting to the sparse setting. First, we consider Szemerédi regularity lemma, a fundamental tool in extremal combinatorics. The regularity method, in its original form, is effective only for dense graphs. It has been a long standing problem to extend the regularity method to sparse graphs. We solve this problem by proving a so-called "counting lemma," thereby allowing us to apply the regularity method to relatively dense subgraphs of sparse pseudorandom graphs. Next, by extending these ideas to hypergraphs, we obtain a simplification and extension of the key technical ingredient in the proof of the celebrated Green-Tao theorem, which states that there are arbitrarily long arithmetic progressions in the primes. The key step, known as a relative Szemerédi theorem, says that any positive proportion subset of a pseudorandom set of integers contains long arithmetic progressions. We give a simple proof of a strengthening of the relative Szemerédi theorem, showing that a much weaker pseudorandomness condition is sufficient. Finally, we give a short simple proof of a multidimensional Szemerédi theorem in the primes, which states that any positive proportion subset of Pd (where P denotes the primes) contains constellations of any given shape. This has been conjectured by Tao and recently proved by Cook, Magyar, and Titichetrakun and independently by Tao and Ziegler.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 171-179).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/99060
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.