Show simple item record

dc.contributor.advisorMartin Z. Bazant.en_US
dc.contributor.authorZeng, Yi, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mathematics.en_US
dc.date.accessioned2015-09-29T19:01:03Z
dc.date.available2015-09-29T19:01:03Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/99062
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2015.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 171-190).en_US
dc.description.abstractLithium-ion battery is a family of rechargeable batteries with increasing importance that is closely related to everyone's daily life. However, despite its enormously wide applications in numerous areas, the mechanism of lithium-ion transport within the battery is still unclear, especially for phase separable battery materials, such as lithium iron phosphate and graphite. Mathematical modeling of the battery dynamics during charging/discharging will be helpful to better understand its mechanism, and may lead to future improvement in the battery technology. In this thesis, a new theoretical framework, the Cahn-Hilliard reaction (CHR) model, is applied to model the bulk phase separation dynamics of the single intercalated particle in the lithium-ion battery. After a study of the efficient numerical algorithm for solving nonlinear diffusion equations, we numerically investigate the thermodynamics and electrokinetics of the 1D spherical CHR model with different possible material properties in detail. We also extend the CHR model to 2D and briefly study the effects of the surface electron-conducting coating layer. We also work on the Marcus theory, which is demonstrated to be a better theoretical framework for heterogeneous electron transfer at the surface of intercalated particles in the batteries. We provide simple closed-form approximations to both the symmetric Marcus-Hush-Chidsey (MHC) and the asymmetric-Marcus-Hush (AMH) models by asymptotic technique. By avoiding the numerical evaluations of the improper integral in the old formulae, computing the surface reaction rate with the new approximation is now more than 1000 times faster than before.en_US
dc.description.statementofresponsibilityby Yi Zeng.en_US
dc.format.extent190 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMathematics.en_US
dc.titleMathematical modeling of lithium-ion intercalation particles and their electrochemical dynamicsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.identifier.oclc921851714en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record