Predicting effective microRNA target sites in mammalian mRNAs
Author(s)
Agarwal, Vikram; Bell, George W; Nam, Jin-Wu; Bartel, David
Downloade05005.full.pdf (4.638Mb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
MicroRNA targets are often recognized through pairing between the miRNA seed region and complementary sites within target mRNAs, but not all of these canonical sites are equally effective, and both computational and in vivo UV-crosslinking approaches suggest that many mRNAs are targeted through non-canonical interactions. Here, we show that recently reported non-canonical sites do not mediate repression despite binding the miRNA, which indicates that the vast majority of functional sites are canonical. Accordingly, we developed an improved quantitative model of canonical targeting, using a compendium of experimental datasets that we pre-processed to minimize confounding biases. This model, which considers site type and another 14 features to predict the most effectively targeted mRNAs, performed significantly better than existing models and was as informative as the best high-throughput in vivo crosslinking approaches. It drives the latest version of TargetScan (v7.0; targetscan.org), thereby providing a valuable resource for placing miRNAs into gene-regulatory networks.
Date issued
2015-08Department
Massachusetts Institute of Technology. Computational and Systems Biology Program; Massachusetts Institute of Technology. Department of Biology; Whitehead Institute for Biomedical ResearchJournal
eLife
Publisher
eLife Sciences Publications, Ltd.
Citation
Agarwal, Vikram, George W Bell, Jin-Wu Nam, and David P Bartel. “Predicting Effective microRNA Target Sites in Mammalian mRNAs.” eLife 4 (August 12, 2015).
Version: Final published version
ISSN
2050-084X