MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Studies of superconformal field theories using GLSM and conformal bootstrap

Author(s)
Lee, Jaehoon, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (16.44Mb)
Alternative title
Studies of superconformal field theories using gauged linear sigma models and conformal bootstrap
Other Contributors
Massachusetts Institute of Technology. Department of Physics.
Advisor
Allan Wilfred Adams, III.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, we study strongly interacting superconformal field theories in two and three dimensions. In two dimensions, we investigate N = (0, 2) gauge theories using the gauged linear sigma models (GLSM). In those theories, we identify simple mechanism by which worldsheet description of H-flux satisfying Green-Schwarz Bianchi identity arises. Under the renormalization group flow, we argue that these models flow into superconformal fixed points describing string theory compactifications backgrounds with non-trivial H-flux turned on. By analyzing quantum-consistency of effective theories with such mechanism, we identify conditions under which these theories to become interacting superconformal field theories in the infrared. In three dimensions, we study maximally supersymmetric (N = 8) conformal field theories by conformal bootstrap approach. We focus on studying the four-point function of stress-tensor multiplet. The superconformal blocks for the four-point function are computed by analyzing superconformal Ward identity. Using these blocks, we study crossing symmetry constraints both numerically and analytically. Doing so, we obtain universal bounds and exact relations of N = 8 superconformal field theory data.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Physics, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 273-288).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/99308
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.