Show simple item record

dc.contributor.advisorClark Barwick.en_US
dc.contributor.authorGlasman, Saulen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mathematics.en_US
dc.date.accessioned2015-10-14T15:05:58Z
dc.date.available2015-10-14T15:05:58Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/99326
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2015.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 65-66).en_US
dc.description.abstractThis thesis is divided into two chapters. In the first, given symmetric monoidal oc-categories C and D, subject to mild hypotheses on D, we define an oc-categorical analog of the Day convolution symmetric monoidal structure on the functor category Fun(C, D). In the second, we develop a Hodge filtration on the topological Hochschild homolgy spectrum of a commutative ring spectrum and describe its elementary properties.en_US
dc.description.statementofresponsibilityby Saul Glasman.en_US
dc.format.extent66 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMathematics.en_US
dc.titleDay convolution and the Hodge filtration on THHen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.identifier.oclc923265650en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record