Show simple item record

dc.contributor.advisorHaynes Miller.en_US
dc.contributor.authorDonovan, Michael Jacken_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mathematics.en_US
dc.date.accessioned2015-10-14T15:06:01Z
dc.date.available2015-10-14T15:06:01Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/99327
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2015.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 219-222).en_US
dc.description.abstractIn this thesis we study the Bousfield-Kan spectral sequence (BKSS) in the Quillen model category sCom of simplicial commutative FF₂ -algebras. We develop a theory of unstable operations for this BKSS and relate these operations with the known unstable operations on the homotopy of the target. We also prove a completeness theorem and a vanishing line theorem which, together, show that the BKSS for a connected object of sCom converges strongly to the homotopy of that object. We approach the computation of the BKSS by deriving a composite functor spectral sequence (CFSS) which converges to the BKSS E2 -page. In fact, we generalize the construction of this CFSS to yield an infinite sequence of CFSSs, with each converging to the E2-page of the previous. We equip each of these CFSSs with a theory of unstable spectral sequence operations, after establishing the necessary chain-level structure on the resolutions defining the CFSSs. This technique may also yield operations on Blanc and Stover's generalized Grothendieck spectral sequences in other settings. We are able to compute the Bousfield-Kan E2-page in the most fundamental case, that of a connected sphere in sCom, using the structure defined on the CFSSs. We use this computation to describe the Ei-page of a May-Koszul spectral sequence which converges to the BKSS E2-page for any connected object of sCom. We conclude by making two conjectures which would, together, allow for a full computation of the BKSS for a connected sphere in sCom.en_US
dc.description.statementofresponsibilityby Michael Jack Donovan.en_US
dc.format.extent222 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMathematics.en_US
dc.titleUnstable operations in the Bousfield-Kan spectral sequence for simplicial commutative FF₂-algebrasen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.identifier.oclc923280510en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record