Show simple item record

dc.contributor.authorCambria, Elena
dc.contributor.authorKroll, Carsten
dc.contributor.authorKrueger, Andrew T.
dc.contributor.authorImperiali, Barbara
dc.contributor.authorChopko Ahrens, Caroline
dc.contributor.authorCook, Christi Dionne
dc.contributor.authorRenggli-Frey, Kasper
dc.contributor.authorGriffith, Linda G
dc.date.accessioned2015-10-22T14:04:02Z
dc.date.available2015-10-22T14:04:02Z
dc.date.issued2015-06
dc.date.submitted2015-06
dc.identifier.issn1525-7797
dc.identifier.issn1526-4602
dc.identifier.urihttp://hdl.handle.net/1721.1/99409
dc.description.abstractSynthetic extracellular matrices are widely used in regenerative medicine and as tools in building in vitro physiological culture models. Synthetic hydrogels display advantageous physical properties, but are challenging to modify with large peptides or proteins. Here, a facile, mild enzymatic postgrafting approach is presented. Sortase-mediated ligation was used to conjugate human epidermal growth factor fused to a GGG ligation motif (GGG-EGF) to poly(ethylene glycol) (PEG) hydrogels containing the sortase LPRTG substrate. The reversibility of the sortase reaction was then exploited to cleave tethered EGF from the hydrogels for analysis. Analyses of the reaction supernatant and the postligation hydrogels showed that the amount of tethered EGF increases with increasing LPRTG in the hydrogel or GGG-EGF in the supernatant. Sortase-tethered EGF was biologically active, as demonstrated by stimulation of DNA synthesis in primary human hepatocytes and endometrial epithelial cells. The simplicity, specificity, and reversibility of sortase-mediated ligation and cleavage reactions make it an attractive approach for modification of hydrogels.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (5R01EB010246)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (5UH2TR000496)en_US
dc.description.sponsorshipInstitute for Collaborative Biotechnologies (W911NF-09-0001)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (1T32GM008334)en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency. Microphysiological Systems Program (W911NF-12-2-0039)en_US
dc.description.sponsorshipBegg New Horizon Fund for Undergraduate Research at MITen_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Biotechnology Training Program NIH/NIGMS 5T32GM008334))en_US
dc.description.sponsorshipBiophysical Instrumentation Facilityen_US
dc.description.sponsorshipVirginia and Daniel K. Ludwig Graduate Fellowshipen_US
dc.description.sponsorshipSwiss National Science Foundation (Postdoctoral Fellowship)en_US
dc.language.isoen_US
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/acs.biomac.5b00549en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceACSen_US
dc.titleCovalent Modification of Synthetic Hydrogels with Bioactive Proteins via Sortase-Mediated Ligationen_US
dc.typeArticleen_US
dc.identifier.citationCambria, Elena, Kasper Renggli, Caroline C. Ahrens, Christi D. Cook, Carsten Kroll, Andrew T. Krueger, Barbara Imperiali, and Linda G. Griffith. “Covalent Modification of Synthetic Hydrogels with Bioactive Proteins via Sortase-Mediated Ligation.” Biomacromolecules 16, no. 8 (August 10, 2015): 2316–26. © 2015 American Chemical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Gynepathology Researchen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.mitauthorCambria, Elenaen_US
dc.contributor.mitauthorRenggli, Kasperen_US
dc.contributor.mitauthorChopko Ahrens, Carolineen_US
dc.contributor.mitauthorCook, Christi Dionneen_US
dc.contributor.mitauthorKroll, Carstenen_US
dc.contributor.mitauthorKrueger, Andrew T.en_US
dc.contributor.mitauthorImperiali, Barbaraen_US
dc.contributor.mitauthorGriffith, Linda G.en_US
dc.relation.journalBiomacromoleculesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsCambria, Elena; Renggli, Kasper; Ahrens, Caroline C.; Cook, Christi D.; Kroll, Carsten; Krueger, Andrew T.; Imperiali, Barbara; Griffith, Linda G.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7732-8405
dc.identifier.orcidhttps://orcid.org/0000-0002-5749-7869
dc.identifier.orcidhttps://orcid.org/0000-0002-1801-5548
dc.identifier.orcidhttps://orcid.org/0000-0001-8272-6419
dc.identifier.orcidhttps://orcid.org/0000-0001-6865-4084
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record