Show simple item record

dc.contributor.advisorCynthia Barnhart and Carolina Osorio.en_US
dc.contributor.authorZhou, Tianli, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Civil and Environmental Engineering.en_US
dc.date.accessioned2015-10-30T18:56:26Z
dc.date.available2015-10-30T18:56:26Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/99570
dc.descriptionThesis: S.M. in Transportation, Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2015.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 81-83).en_US
dc.description.abstractVehicle sharing services have become a major urban transportation mode. One-way vehicle sharing service facilitates access to public transportation systems, thereby addressing the first and last mile challenges and creating an integrated vehicle-sharing and public transportation network providing origin-to-destination service. In this thesis we provide models and methods for design one-way vehicle-sharing networks. The location of one-way vehicle sharing stations strongly influence the level of travel time savings achieved by the users of the system. Our goal, then, is to select station locations so as to maximize the connectivity with the public transportation system, increase the accessibility to the urban area, reduce travel times, reduce congestion, and reduce emissions. We select a certain number of stations to install from a set of candidates whose locations are predetermined. In Chapter 2, we review existing literature in which the objective is to minimize total user travel cost. In Chapter 3, we propose a new model with the objective to design a network such that more users experience travel time savings that are sufficiently large to elicit mode shifts to the integrated public transportation option. We develop a decomposition procedure to solve our model and propose cut generation methods to expedite the solution process. Computational results in Chapter 4 show that our algorithm reduces solution times, while increasing the number of travelers who can experience travel time savings of significance by using our newly designed network. In Chapter 5, we propose a heuristic method to generate a network design with (near-) minimal total travel cost. Our decomposition method that searches in a neighborhood around the known best design, and changes the neighborhood center when improved solution are identified or expands the neighborhood if no better solution is found. Computational results show that our algorithm finds improved solutions, compared to existing approaches, for large-scale networks with imposed limits on computation time. In Chapter 6, we conclude the thesis and provide future research guidance.en_US
dc.description.statementofresponsibilityby Tianli Zhou.en_US
dc.format.extent83 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectCivil and Environmental Engineering.en_US
dc.titleNetwork design for integrated vehicle-sharing and public transportation serviceen_US
dc.typeThesisen_US
dc.description.degreeS.M. in Transportationen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineeringen_US
dc.identifier.oclc924788806en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record