MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Performance evaluation of innovative toggle brace damper for flexible structure seismic upgrade

Author(s)
Jiang, Jian Hua, M. Eng. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (8.305Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering.
Advisor
Jerome J. Connor and Pierre Ghisbain.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Amplifying the motion of viscous dampers has been recognized as an effective solution to mitigate structural response to wind and seismic excitation. Motion amplification devices are designed to amplify a small interstory drift to intensify the stroke of the dampers attached. The efficiency of such devices relies on their geometric configurations in addition to the stiffness of the support elements. This thesis focuses on the seismic performance evaluation of the toggle brace frame configuration employed for seismic upgrade. In order to carry out a performance evaluation of the toggle brace damper, a practical approach to performance-based earthquake engineering (PBEE) is presented in this study. The approach considers the seismic hazard, structural response, resulting damage, and repair costs associated with restoring the building to its original condition using a fully probabilistic analysis. The procedure is organized to be consistent with conventional building designs, construction, and analysis practices so that it can be readily incorporated into a design process. A nine-story moment frame located in downtown Los Angeles based on pre-Northridge design code is subjected to PBEE evaluation in this study. The performance of the structural frame is assessed by conducting a non-linear dynamic time history analysis in both cases, with and without the inclusion of the toggle brace damper. The results and comparisons are detailed in the chapters of this thesis.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 72-73).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/99602
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.