## Quantum Lower Bound for Inverting a Permutation with Advice

##### Author(s)

Nayebi, Aran; Aaronson, Scott; Belovs, Aleksandrs; Trevisan, Luca
DownloadAaronson_Quantum lower.pdf (165.9Kb)

OPEN_ACCESS_POLICY

# Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

##### Terms of use

##### Metadata

Show full item record##### Abstract

Given a random permutation f : [N] → [N] as a black box and y ∈ [N], we want to output x = f[superscript −1](y). Supplementary to our input, we are given classical advice in the form of a pre-computed data structure; this advice can depend on the permutation but not on the input y. Classically, there is a data structure of size [~ over O](S) and an algorithm that with the help of the data structure, given f(x), can invert f in time [~ over O](T), for every choice of parameters S, T, such that S · T ≥ N. We prove a quantum lower bound of T[superscript 2] · S = [~ over Ω](εN) for quantum algorithms that invert a random permutation f on an ε fraction of inputs, where T is the number of queries to f and S is the amount of advice. This answers an open question of De et al.
We also give a Ω(√N/m) quantum lower bound for the simpler but related Yao’s box problem, which is the problem of recovering a bit x[subscript j], given the ability to query an N-bit string x at any index except the j-th, and also given m bits of classical advice that depend on x but not on j.

##### Date issued

2015-09##### Department

Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science##### Journal

Quantum Information & Computation

##### Publisher

Rinton Press

##### Citation

Nayebi, Aran, Scott Aaronson, Aleksandrs Belovs, and Luca Trevisan. "Quantum Lower Bound for Inverting a Permutation with Advice." Quantum Information and Computation 15(11&12), 901-913.

Version: Author's final manuscript