MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Numerical modeling of elastic-wave scattering by near-surface heterogeneities

Author(s)
Almuhaidib, Abdulaziz M.; Toksoz, M. Nafi
Thumbnail
DownloadAlmuhaidib-2013-Numerical modeling o.pdf (11.03Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
In land seismic data, scattering from surface and near-surface heterogeneities adds complexity to the recorded signal and masks weak primary reflections. To understand the effects of near-surface heterogeneities on seismic reflections, we simulated seismic-wave scattering from arbitrary-shaped, shallow, subsurface heterogeneities through the use of a perturbation method for elastic waves and finite-difference forward modeling. The near-surface scattered wavefield was modeled by looking at the difference between the calculated incident (i.e., in the absence of scatterers) and the total wavefields. Wave propagation was simulated for several earth models with different near-surface characteristics to isolate and quantify the influence of scattering on the quality of the seismic signal. The results indicated that the direct surface waves and the upgoing reflections were scattered by the near-surface heterogeneities. The scattering took place from body waves to surface waves and from surface waves to body waves. The scattered waves consisted mostly of body waves scattered to surface waves and were, generally, as large as, or larger than, the reflections. They often obscured weak primary reflections and could severely degrade the image quality. The results indicated that the scattered energy depended strongly on the properties of the shallow scatterers and increased with increasing impedance contrast, increasing size of the scatterers relative to the incident wavelength, decreasing depth of the scatterers, and increasing attenuation factor of the background medium. Also, sources deployed at depth generated weak surface waves, whereas deep receivers recorded weak surface and scattered body-to-surface waves. The analysis and quantified results helped in the understanding of the scattering mechanisms and, therefore, could lead to developing new acquisition and processing techniques to reduce the scattered surface wave and enhance the quality of the seismic image.
Date issued
2014-05
URI
http://hdl.handle.net/1721.1/99706
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences; Massachusetts Institute of Technology. Earth Resources Laboratory
Journal
Geophysics
Publisher
Society of Exploration Geophysicists
Citation
Almuhaidib, Abdulaziz M., and M. Nafi Toksoz. “Numerical Modeling of Elastic-Wave Scattering by Near-Surface Heterogeneities.” Geophysics 79, no. 4 (May 27, 2014): T199–T217. © 2014 Society of Exploration Geophysicists
Version: Final published version
ISSN
0016-8033
1942-2156

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.