Show simple item record

dc.contributor.advisorFranz X. Kärtner and Erich P. Ippen.en_US
dc.contributor.authorPutnam, William Pen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2015-11-09T19:52:30Z
dc.date.available2015-11-09T19:52:30Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/99842
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2015.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 171-178).en_US
dc.description.abstractLight fields from modern high-intensity, femtosecond laser systems can produce electrical forces that rival the binding forces in atomic and solid-state systems. In this strong-field regime, conventional non-linear optics gives way to novel phenomena such as the production of attosecond bursts of electrons and photons. Strong laser fields are generally achieved with amplified, ultrafast laser pulses. In this thesis we explore phenomena unique to strong-fields by using optical resonators to passively enhance ultrafast laser pulses. We pursue two major themes in the area of ultrafast resonator-enhanced strong-field physics. First, we use plasmonic nanoparticles as nano-optical resonators to explore strong-field photoemission near nanostructures on the surface of a chip. We demonstrate strong-field photoemission with our chip-scale devices under ambient conditions. Additionally, we use the strong-field photoemission current to probe the ultrafast temporal response of the plasmonic nano-optical field around the nanoparticle emitters. We also show a carrier-envelope sensitive component of the photoemission current and develop a simple model to predict this sensitivity. Second, we investigate cavity-enhanced high-harmonic generation. In particular, we explore the design of novel optical cavities based on Bessel-Gauss modes. Such cavities might have the capability to allow perfect out-coupling for intra-cavity generated harmonics as well as to provide for extremely large mode areas on the cavity mirrors. We prototype a particular Bessel-Gauss cavity design and discuss the limitations of this approach.en_US
dc.description.statementofresponsibilityby William Putnam.en_US
dc.format.extent178 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleStrong-field physics with ultrafast optical resonatorsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc927411483en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record