MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unitary transformations on temporal modes using dispersive optics for Boson Sampling and quantum simulation

Author(s)
Pant, Mihir
Thumbnail
DownloadFull printable version (2.736Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Dirk R. Englund.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Conventionally, unitary transformations on optical modes have been implemented on a spatial basis set using a system of beam splitters and phase shifters. We present methods which allow orders of magnitude increase in the number of modes in linear optics experiments by moving from spatial encoding to temporal encoding and using dispersion. This enables significant practical advantages for linear quantum optics and Boson Sampling experiments. Passing identical, consecutively heralded photons through time-independent dispersion and measuring the output time of the photons is equivalent to a Boson Sampling experiment for which no efficient classical algorithm is reported, to our knowledge. With time-dependent dispersion, it is possible to implement arbitrary single-particle unitaries. Given the relatively simple requirements of these schemes, they provide a path to realizing much larger linear quantum optics experiments including post-classical Boson Sampling machines.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 37-39).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/99851
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.