MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A continuous-time multi-stage noise-shaping delta-sigma modulator for next generation wireless applications

Author(s)
Yoon, Do Yeon
Thumbnail
DownloadFull printable version (16.46Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Hae-Seung Lee.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A continuous-time (CT) delta-sigma ([delta][sigma]) modulator for modern wireless communication applications is investigated in this thesis. Quantization noise is suppressed aggressively by increasing the effective order of the noise transfer function (NTF). In order to increase the effective order of the NTF, a 2-loop sturdy multi-stage noise-shaping (SMASH) architecture is utilized. The proposed CT SMASH architecture has a much wider signal bandwidth which was limited in the discrete-time (DT) SMASH architecture due to the inherent sampling frequency limitation of the DT implementation. Furthermore, the proposed CT SMASH architecture provides a better quantization noise suppression capability than the DT SMASH architecture by more completely canceling the quantization noise from the first loop. The CT SMASH architecture is implemented with several circuit techniques suitable for high operation speed. These circuit techniques allow the proposed CT [delta][sigma] modulator to achieve wide bandwidth, high resolution, and low power consumption for modern wireless communication applications. As a result, the prototype fabricated in 28nm CMOS achieves DR of 85dB, peak SNDR of 74.9dB, SFDR of 89.3dBc and Schreier FOM of 172.9dB over a 50MHz bandwidth at a 1.8GHz sampling frequency.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 115-121).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/99854
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.