Relationship between thermoelectric figure of merit and energy conversion efficiency

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation
Kim, Hee Seok, Weishu Liu, Gang Chen, Ching-Wu Chu, and Zhifeng Ren. “Relationship Between Thermoelectric Figure of Merit and Energy Conversion Efficiency.” Proc Natl Acad Sci USA 112, no. 27 (June 22, 2015): 8205–8210. © 2015 American Meteorological Society

As Published
http://dx.doi.org/10.1073/pnas.1510231112

Publisher
National Academy of Sciences (U.S.)

Version
Final published version

Accessed
Fri Dec 21 20:17:12 EST 2018

Citable Link
http://hdl.handle.net/1721.1/101109

Terms of Use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Detailed Terms
Relationship between thermoelectric figure of merit and energy conversion efficiency

Hee Seok Kim, Weishu Liu, Gang Chen, Ching-Wu Chu, and Zhifeng Ren

A thermoelectric (TE) generator produces electric power directly from a temperature gradient through TE material (1–4). The maximum efficiency of a TE generator was first derived based on a constant property model by Altenkirch (5) in 1909, and its optimized formula has been commonly used since Ioffe (6) reported the optimum condition for the maximum efficiency in 1957, which is (7)

\[\eta_{\text{max}} = \frac{\Delta T}{T_h} \sqrt{\frac{1 + Z \cdot T_{\text{avg}}}{1 + Z}} \]

where \(T_h \) and \(T_c \) are the hot- and cold-side temperatures, respectively, and \(\Delta T \) and \(T_{\text{avg}} \) are their difference, \(T_h - T_c \), and average \((T_h + T_c)/2 \), respectively. The TE conversion efficiency by Eq. 1 is the product of the Carnot efficiency \(\Delta T/T_h \) and a second factor as a function of the material’s figure of merit \(Z = S^2 \rho^{-3} \kappa^{-1} \), where \(S \), \(\rho \), and \(\kappa \) are the Seebeck coefficient, electrical resistivity, and thermal conductivity, respectively. Since the 1950s, the dimensionless figure of merit \(Z \), such as the peak \(Z \) (8–10) and the average \(Z \) (2, 11, 12), has been used as the guide to achieve better materials for higher conversion efficiency. The maximum efficiency by Eq. 1 is inadequate when \(Z \) is temperature dependent. Due to the assumption of temperature independence, Eq. 1 only correctly predicts the maximum efficiency at a small temperature difference between the hot and cold sides, or in limited TE materials (13–15) that have \(Z \) almost constant over the whole temperature range. By ignoring the assumption and simply using Eq. 1, incorrect efficiency that is much higher than is practically achievable (16, 17) is often reported. In most cases for \(S \), \(\rho \), and \(\kappa \) that are temperature dependent, \(Z \) values are not linearly temperature dependent (18–22) and they operate at a large temperature difference, so the prediction by Eq. 1 cannot be reliable. To overcome the inadequacy, complicated numerical simulations based on the finite difference method were carried out to calculate the efficiency while accounting for the temperature dependence over a large temperature difference between the cold and hot sides (23–25). The efficiency by Eq. 1 is conventionally used by getting average \(Z \) in two ways: (i) an integration with respect to temperature, \(Z_{\text{int}} = \int \frac{1}{Z(T)} \frac{dT}{T} \), and (ii) a \(Z \) value corresponding to the average temperature, \(Z_{\text{avg}} = Z(T_{\text{avg}}) \). The \(Z_{\text{int}} T_{\text{avg}} \) and \(Z_{\text{avg}} T_{\text{avg}} \) are called the average \(Z \) hereafter. Fig. 1A shows the temperature-dependent \(Z \) and average \(Z \)'s of the p-type Ni-doped MgAgSb (26), and their corresponding efficiency calculations by Eq. 1 are shown in Fig. 1B and are matched with the numerical simulation of an ideal case because the \(Z \) vs. \(T \) is not too much off a constant (Fig. 1A). In Fig. 1C, however, n-type InSe \(_{3-x} \) (17) has larger variations of average \(Z \)'s depending on the method used due to the strong temperature dependence (Fig. S1B) resulting in much different efficiency predictions (Fig. 1D). Even though the peak \(Z \) of InSe \(_{3-x} \) is higher than that of Ni-doped MgAgSb, the average \(Z \)'s and predicted efficiency are much lower, which means that peak \(Z \) value is not the right indicator for a TE material’s efficiency. In addition, any average \(Z \) cannot be a correct index due to lack of consistency for the following reasons: (i) average \(Z \)'s vary by the averaging techniques (Fig. 1A and C), (ii) \(Z_{\text{int}} \), is estimated larger than \(Z_{\text{avg}} \) when the \(Z \) curve is in convex upward shape (Fig. S1A) and vice versa (Fig. S1B), and (iii) analytical prediction of some materials based on the average \(Z \)'s is far away from the numerical analysis (Fig. 1D). As discussed, conventional methods using average \(Z \)'s often do not predict a realistic efficiency in practical operating conditions over a large temperature difference between the cold and hot sides because \(Z \) is strongly temperature dependent in some materials. Therefore, the conventional efficiency formula (Eq. 1) often misleads and gives rise to an impractically high efficiency prediction. For this reason, it is desirable to establish a new model to predict the energy conversion efficiency based on the temperature-dependent individual TE properties for devices operating under a large temperature difference. Here, we define an engineering

Thermoelectric materials generate electricity from temperature gradients. The dimensionless figure of merit, \(Z = S^2 \rho^{-3} \kappa^{-1} \), is calculated from the Seebeck coefficient \(S \), electrical resistivity \(\rho \), and thermal conductivity \(\kappa \). The calculated efficiency based on \(Z \) using the conventional formula is not reliable in some cases due to the assumption of temperature-independent \(S \), \(\rho \), and \(\kappa \). We established a new efficiency formula by introducing an engineering figure of merit \(Z_{\text{eng}} \) and an engineering power factor \(PF_{\text{eng}} \) to predict reliably and accurately the efficiency of materials at a large temperature difference between the hot and cold sides, unlike the conventional \(Z \) and \(PF \) providing performance only at specific temperatures. These new formulas will profoundly impact the search for new thermoelectric materials.

Significance

Author contributions: H.S.K. and Z.R. designed research; H.S.K. performed research; H.S.K., W.L., G.C., C.W.C., and Z.R. analyzed data; H.S.K., W.L., G.C., C.W.C., and Z.R. wrote the paper.

Reviews included: B.L., National University of Singapore.

The authors declare no conflict of interest.

1To whom correspondence may be addressed. Email: gchen@mit.edu, cxchu@uh.edu, or zren@uh.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1510231112/-/DCSupplemental.
and an engineering power factor η_{eng} as realistic indicators associated with temperature difference whereas the conventional ZT and PF indicate a material’s performance only at a specific temperature. Based on $(ZT)_{\text{eng}}$ and $(PF)_{\text{eng}},$ we report the formulas for more accurate prediction of maximum efficiency by accounting for a cumulative temperature dependence of $S, \rho,$ and k regarding a single homogeneous TE material. A generic formula including Thomson heat is also derived with the corrected contribution of Joule and Thomson heat leading to larger error. In Fig. 2A, the temperature-dependent η of HH calculated by the two methods are compared with those from numerical simulation whereas that for HH agrees very well with the numerical results. The difference is mainly caused by the new formula we present here predicting efficiency more accurately without carrying out numerical simulation. Eqs. 2 and 3 enable one to analytically predict the maximum efficiency more accurately without carrying out numerical simulations or experimental setup and measurements. $(ZT)_{\text{eng}}$, rather than ZT, predicts the practical performance of a TE material at any given temperature difference; α implies a level of contribution of the Thomson effect to the analytical prediction of the maximum efficiency. The rationale for why Eq. 2 still leads to some overestimation will be discussed later.

Efficiency. The peak ZTs of half-Heusler (HH: $\text{Hf}_{0.5} \text{CoSb}_{1-x} \text{Sn}_{x}$) and SnSe (22) are 0.94 at 700 °C and 2.6 at 650 °C, respectively, as shown in Fig. 2A. The temperature-dependent average ZTs of HH calculated by the new formula are compared with those from numerical simulation over the whole temperature range whereas those of SnSe differ significantly after $\Delta T = 250$ °C due to the strong temperature dependence of the TE properties (Fig. S2), and the average ZTs of SnSe become similar to or much higher than those of HH at $T_h = 700$ °C depending on the averaging technique (Fig. 2B). Based on the peak and average ZT, one may expect that SnSe gives rise to a much higher efficiency than HH at $\Delta T = 600$ °C and $T_c = 100$ °C when using the conventional formula, Eq. 1. However, Eq. 2 yields efficiencies of 9.7% for HH and 7.3% for SnSe (Fig. 2C), which is opposite to what was expected from Eq. 1 by average ZTs (Fig. 2D and E). To validate the new efficiency formula compared with the conventional one, a numerical simulation based on a finite difference model (27, 28) was carried out as shown in Fig. 2C. The conventional formula overestimates the efficiency of SnSe by a factor of 2, but the new formula we present here predicts more accurate efficiency, overestimated only by 17% compared with the numerical results (Fig. 2C and E), which strongly indicates that Eq. 2 should be used in the future to calculate the efficiency of any TE materials using the measured TE properties. In addition, the optimized ratio m_{opt} is essential to design a TE generator and integrate it into applications.

Intensity Factor of Thomson Effect. In Fig. 2C, the efficiency of SnSe by Eq. 2 is still overestimated by 17% in comparison with that from numerical simulation whereas that for HH agrees very well with the numerical results. The difference is mainly caused by the lack of Thomson effect on the input heat flux in Eq. 2 whereas the numerical simulations take it into account. However, the relative degree of the Thomson effect contribution to the analytically predicted efficiency can be estimated by $\alpha.$ Note that $\alpha = 1$ when the Seebeck coefficient is temperature independent. If the temperature-dependent Seebeck coefficient follows a monotonic curve, $\alpha < 1$ at a given temperature boundary implies $dS/dT > 0$, in which the Thomson effect plays a role in increasing the efficiency (29). The magnitude of α shows the level of the Thomson effect associated with the temperature difference, which means that one can presume the error of efficiency prediction caused by the absence of Thomson effect in Eq. 2, where larger $|\alpha|$ indicates larger error. In Fig. 2C, the temperature-dependent α of SnSe showing a steep drop below 1 gives rise to the larger gap between the numerical and analytical results, and indicates that the analytical result is overestimated compared with numerical simulation. In contrast, due to smaller $|\alpha|,$ less Thomson effect comes into play for HH, and $\alpha > 1$ represents the underrated efficiency by Eq. 2 rather than by numerical

Results and Discussion

The Formulas by Cumulative Temperature-Dependent Properties. The formula for the maximum efficiency based on cumulative temperature-dependent properties is derived as (see SI Derivation of the Maximum Efficiency Without Thomson Heat for a detailed derivation)

$$\eta_{\text{max}}\equiv \eta_{\text{eng}}(1+ (ZT)_{\text{eng}}(\alpha/\eta_T-1/2) - 1) = \eta_c \Delta T,$$

where η_c is Carnot efficiency and $(ZT)_{\text{eng}}$ is the engineering dimensionless figure of merit defined as

$$(ZT)_{\text{eng}}= Z_{\text{eng}} \Delta T = \frac{\int_{T_h}^{T_c} S(T) dT}{\int_{T_h}^{T_c} \rho(T) dT \int_{T_h}^{T_c} \kappa(T) dT} \frac{\pi^4}{2} \approx \frac{\eta_{\text{eng}}}{\eta_c},$$

where Z_{eng} is the engineering figure of merit in K$^{-1}$, $(PF)_{\text{eng}}$ is the engineering power factor in W m$^{-1}$K$^{-1}$, and α is a dimensionless intensity factor of the Thomson effect defined as $\alpha = S(T_h)/S(T_c)$, where $S(T_c)$ is the Seebeck coefficient at the hot-side temperature T_h. The first term of the numerator in Eq. 2 is the optimized ratio of external (R_e) to internal electric resistance (R_e) for the maximum efficiency. According to Eq. 2, the maximum efficiencies of Ni-doped MgAgSb and In$_2$Se$_3$ are compared with those by Eq. 1 in Fig. 1 B and D, respectively, in which the efficiency of In$_2$Se$_3$ by Eq. 2 based on $(ZT)_{\text{eng}}$ is much reduced but in good agreement with the result by numerical simulation. Eqs. 2 and 3 enable one to analytically predict the maximum efficiency more accurately without carrying out numerical simulations or experimental setup and measurements. $(ZT)_{\text{eng}}$, rather than ZT, predicts the practical performance of a TE material at any given temperature difference; α implies a level of contribution of the Thomson effect to the analytical prediction of the maximum efficiency. The rationale for why Eq. 2 still leads to some overestimation will be discussed later.

Fig. 1. Inadequacy of the relationship between the conventional ZT and the maximum efficiency. (A) ZT vs. T of Ni-doped MgAgSb (26). Circles are measured data, and the black line is the fitted curve. Solid blue and dashed red lines are average ZTs by Z_{avg} and Z_{avg}, respectively. (B) Efficiencies at $T_c = 25$ °C by experimental measurement (circles), by numerical simulation of ideal (solid blue line) and average temperature (dashed red line) for Z_{avg} and by the new formula (open squares in black line). The ideal and actual conditions of the numerical predictions denote the cases excluding and including electric contact/parasitic resistance (a total 36 μΩ cm2 from two ends) (26), respectively. (C) ZTs vs. T and (D) efficiencies at $T_c = 25$ °C of In$_2$Se$_3$. The x axis in A and C indicates the hot-side temperature for the averaged ZTs, and the measurement temperature for ZT data and their polynomial fittings. (E) and (F) show the level of the Thomson effect enable one to analytically predict the maximum efficiency more accurately without carrying out numerical simulations or experimental setup and measurements. $(ZT)_{\text{eng}}$, rather than ZT, predicts the practical performance of a TE material at any given temperature difference; α implies a level of contribution of the Thomson effect to the analytical prediction of the maximum efficiency. The rationale for why Eq. 2 still leads to some overestimation will be discussed later.

Efficiency. The peak ZTs of half-Heusler (HH: $\text{Hf}_{0.5} \text{CoSb}_{1-x} \text{Sn}_{x}$) and SnSe (22) are 0.94 at 700 °C and 2.6 at 650 °C, respectively, as shown in Fig. 2A. The temperature-dependent average ZTs of HH calculated by the two methods are compared with those from numerical simulation over the whole temperature range whereas those of SnSe differ significantly after $\Delta T = 250$ °C due to the strong temperature dependence of the TE properties (Fig. S2), and the average ZTs of SnSe become similar to or much higher than those of HH at $T_h = 700$ °C depending on the averaging technique (Fig. 2B). Based on the peak and average ZT, one may expect that SnSe gives rise to a much higher efficiency than HH at $\Delta T = 600$ °C and $T_c = 100$ °C when using the conventional formula, Eq. 1. However, Eq. 2 yields efficiencies of 9.7% for HH and 7.3% for SnSe (Fig. 2C), which is opposite to what was expected from Eq. 1 by average ZTs (Fig. 2D and E). To validate the new efficiency formula compared with the conventional one, a numerical simulation based on a finite difference model (27, 28) was carried out as shown in Fig. 2C. The conventional formula overestimates the efficiency of SnSe by a factor of 2, but the new formula we present here predicts more accurate efficiency, overestimated only by 17% compared with the numerical results (Fig. 2C and E), which strongly indicates that Eq. 2 should be used in the future to calculate the efficiency of any TE materials using the measured TE properties. In addition, the optimized ratio m_{opt} is essential to design a TE generator and integrate it into applications.

Intensity Factor of Thomson Effect. In Fig. 2C, the efficiency of SnSe by Eq. 2 is still overestimated by 17% in comparison with that from numerical simulation whereas that for HH agrees very well with the numerical results. The difference is mainly caused by the lack of Thomson effect on the input heat flux in Eq. 2 whereas the numerical simulations take it into account. However, the relative degree of the Thomson effect contribution to the analytically predicted efficiency can be estimated by $\alpha.$ Note that $\alpha = 1$ when the Seebeck coefficient is temperature independent. If the temperature-dependent Seebeck coefficient follows a monotonic curve, $\alpha < 1$ at a given temperature boundary implies $dS/dT > 0$, in which the Thomson effect plays a role in increasing the efficiency (29). The magnitude of α shows the level of the Thomson effect associated with the temperature difference, which means that one can presume the error of efficiency prediction caused by the absence of Thomson effect in Eq. 2, where larger $|\alpha|$ indicates larger error. In Fig. 2C, the temperature-dependent α of SnSe showing a steep drop below 1 gives rise to the larger gap between the numerical and analytical results, and indicates that the analytical result is overestimated compared with numerical simulation. In contrast, due to smaller $|\alpha|,$ less Thomson effect comes into play for HH, and $\alpha > 1$ represents the underrated efficiency by Eq. 2 rather than by numerical
analysis. Even though Eq. 2 does not take Thomson effect on the input heat flux into account for the efficiency prediction, it provides which direction as well as how much higher or lower the efficiency is shifted by the cumulative effect of Thomson heat compared with an accurate result.

Engineering Dimensionless Figure of Merit (ZT).eng. By revisiting Eqs. S5 and S11, it is noted that the efficiency formula is a strong function of (ZT)eng so the maximized (ZT)eng is highly desired for the maximum efficiency. Fig. 3A shows ΔT-dependent (ZT)eng curves of HH and SnSe that have the same trends as the practical efficiency predictions (Fig. 2C) through the whole temperature range, in which (ZT)eng implies the equivalent ZT at a given ΔT no matter how high the peak ZT is. Even though the peak ZT of SnSe is much higher than that of HH (Fig. 2A), by a factor of 3, the (ZT)eng of SnSe is much lower (Fig. 3A). This is because the (ZT)eng is ΔT-dependent whereas ZT lacks both effects of the temperature boundary condition and its cumulative effect. To overcome the inadequacy of ZT, the effective figure of merit (ZT)eff = \[\int T S(T) dT / \Delta T \int_{\Delta T} r(T) dT \] has been reported (30, 31), of which HH and SnSe is shown as solid lines in Fig. 3A, where (ZT)eff also has a tendency somewhat similar to the efficiency excursion rather than average ZTs. However, (ZT)eff has impractically large values at very small ΔT, and becomes comparable to (ZT)eng at higher \(T_b \). This indicates that (ZT)eff implies the averaged performance whereas (ZT)eng directly delineates the accumulated performance associated with a given temperature difference. In addition, (ZT)eng shows a better fitted trend with the efficiency prediction shown in Fig. 3B and C, in which the vertical axes represent normalized quantities such as \(\eta \) (open symbols), (ZT)eng (solid lines), and (ZT)eff (dashed lines).

Engineering Power Factor and Output Power Density. The output power density \(P_d \) at the maximum efficiency based on the \((PF)_{eng} \) is expressed as

\[
P_d = (PF)_{eng} \Delta T \frac{m_{opt}}{L (1 + m_{opt})^2}.
\]

The output power density is dependent on the TE leg’s dimensions as well as the material properties whereas the efficiency is determined only by the material’s characteristics. Fig. 3D and E shows the output power densities of HH and SnSe at \(T_e = 100^\circ C \) with \(\Delta T \), where a cubic-shaped TE leg is assumed for the output power prediction, and a simple averaged Seebeck coefficient and electrical resistance at a given temperature difference are used for the conventional PF-based prediction. The power density based on \((PF)_{eng} \) has better agreement with the numerical prediction within 1% and 15% of relative difference for HH and SnSe, respectively, whereas that based on conventional PF shows 13% and 33% of relative difference at \(\Delta T = 600^\circ C \) for HH and SnSe, respectively. The amount of power generation by HH is more than tenfold as large as that of SnSe in the same TE leg dimensions as shown in Fig. 3D and E due to the large difference of thermal conductivity of the materials. By adjusting leg dimensions for matching similar input heat range to keep the same ΔT, the power density can be comparable (Fig. S4), but reducing or increasing a leg length causes thermomechanical structural issues that are outside the scope of this study, so the same dimension of leg is considered to examine the intrinsic characteristics of materials for power generation. In Fig. 3F, \((PF)_{eng} \) shows similar tendency and relative scale to the power.
density by the numerical simulation (Fig. 3F, Inset), indicating an intrinsic performance for power generation of a TE material operated at practical temperature gradients, which has quite different trends from PF (Fig. S2E). Thus \((ZT)_{\text{eng}}\) and \((PF)_{\text{eng}}\) enable one to compare directly the level of a material’s performance at any operating temperature differences without the detailed calculations of efficiency and output power generation.

Application to Other TE Materials. Fig. 4 shows the generalization of this work by applying Eqs. 2–4 to other TE materials with MgAgSb (26) and HH (13) shown for comparison. At low temperatures up to 300 °C, MgAgSb has higher \(ZT\) (Fig. 4A), average \(ZT\) (Fig. 4B), and \((ZT)_{\text{eng}}\) (Fig. 4C) among others, which leads to higher conversion efficiency in this temperature range (Fig. 4D). Even though the peak \(ZT\) and average \(ZT\) of \(K_{0.02}Pb_{0.98}Te_{0.75}Se_{0.25}\) (K-PbTeSe) (21) are higher than those of CeO\(_{0.55}\)NdO\(_{0.45}\)Fe\(_{3.5}\)Co\(_{0.5}\)Se\(_{2}\) (SKU) (14) by up to 40% of relative difference at \(\Delta T = 550^\circ C\) (Fig. 4A and B). Eq. 2 and numerical simulation show that their efficiencies are comparable to each other within 8% and 4.5% of relative difference, respectively, whereas Eq. 1 yields the efficiency of K-PbTeSe at 12% relatively higher than that of SKU (Fig. 4D). This practical trend of the efficiency by Eq. 2 is simply inferred from \((ZT)_{\text{eng}}\), which is more analogous than average \(ZT\)s. The efficiency of MgAgSb by Eq. 1 shows somewhat better agreement with the numerical simulation than by Eq. 2. However, there is no analogy to predict quantitatively the difference, and the tendency is not predictable either, i.e., what leads to over- or underestimated efficiency compared with numerical analysis. Snyder and Ursell reported that Eq. 1 works well when the compatibility factor has insignificant variation (32), but it is not enough to show how large the disagreement is in other cases. However, the efficiency difference by Eq. 2 and the numerical simulation is mainly caused by the presence of the Thomson effect that can be informed by \(\alpha\). In Fig. 4E, MgAgSb has \(\alpha\) below 1, which results in the overrated efficiency by Eq. 2, and the rest of them have \(\alpha > 1\) leading to the underrated efficiency compared with the numerical results. Even though the magnitude of \(\alpha\) does not indicate the exact degree of the error, the intensity of \(\alpha\) is enough to compare relatively the effect of the Thomson heat among other materials. Fig. 4F shows the \(\Delta T\)-dependent \((PF)_{\text{eng}}\), which has the same tendency as the output power density (Fig. 4F, Inset) under the same leg dimensions. This trend cannot be inferred directly by the conventional PF, which only points to the momentary characteristic at a temperature like \(ZT\).

Generic Formula for Maximum Efficiency Including Thomson Heat. As discussed, the Thomson effect is missing in the evaluation of heat flux by Eq. 2, which may cause under- or overestimation of the efficiency depending on the degree of Thomson heat at a given temperature gradient. Some studies evaluated the conversion efficiency analytically accounting for the Thomson effect, but they are valid only in limited conditions by assuming a constant Thomson coefficient (29, 33), linear behavior of \(S\), \(\rho\), and \(\kappa\), and a temperature-dependent Seebeck coefficient with constant \(\rho\) and \(\kappa\) (35). In this section, a generic formula including Thomson heat is established to account for temperature dependence of \(S\), \(\rho\), \(\kappa\), and \(\tau\) at a large temperature difference, where \(\tau\) is the Thomson coefficient, and no assumption is required to specify the type of temperature dependence of \(S\), \(\rho\), \(\kappa\), and \(\tau\). In addition, practical fractions of Joule and Thomson heat returning to the hot end are evaluated by defining weight factors \(W_J\) and \(W_T\), respectively.

The governing equation for energy balance over one-dimensional heat flow is (7)

\[
\frac{d}{dx} \left(\kappa(T) \frac{dT}{dx} \right) + J^2 \rho(T) - J \tau(T) \frac{dT}{dx} = 0,
\]

where \(x\) and \(J\) are the distance from the heat source and current density, respectively, and \(\tau(T)\) is the temperature-dependent Thomson coefficient defined as \(\tau(T) = T d\delta(S(T))/dT\). By integrating Eq. 5 twice with respect to \(x\) and applying the boundary conditions of \(T\big|_{x=0} = T_h\) and \(T\big|_{x=L} = T_c\), where \(L\) is a length of the TE leg, the input heat \(Q_{in}\) at the hot side becomes

\[
Q_{in} = \frac{A}{L} \int_{T_c}^{T_h} \kappa(T) dT + I T_h S(T_h) - W_J R - W_T I \frac{t}{I} \tau(T) dT,
\]

where \(A\) and \(I\) are the cross-sectional area and electric current, respectively, \(W_J\) and \(W_T\) are defined as dimensionless weight factors of Joule and Thomson heat, respectively,

\[
W_J = \frac{\int_{T_c}^{T_h} \int_{T_c}^{T_h} \rho(T) dT dT}{\Delta T \int_{T_c}^{T_h} \tau(T) dT}, \quad W_T = \frac{\int_{T_c}^{T_h} \int_{T_c}^{T_h} \tau(T) dT dT}{\Delta T \int_{T_c}^{T_h} \tau(T) dT}.
\]

where a linear temperature distribution in the TE leg is assumed, i.e., \(dT/dx = -\Delta T/L\), \(W_J\) and \(W_T\) lead to practical contributions of Joule and Thomson heat to the heat flux rather than the \(I^2R\) fraction of 1/2 to the hot side in the constant property model (7). The conversion efficiency accounting for the Thomson effect, the ratio of output power to input heat rate, is finalized as (see SI Derivation of the Maximum Efficiency Including Thomson Heat for a detailed derivation)

\[
\eta_{\text{max}} = \eta_0 \sqrt{1 + (ZT)_{\text{eng}} \alpha_0 \eta_0^2 - 1},
\]

where
where

\[\alpha_i = S(T_i) \Delta T \frac{\int_{T_i}^{T_{i+1}} \tau(T) dT}{\int_{T_i}^{T_{i+1}} S(T) dT} W_T \eta_i - i W \eta_i. \]

Eq. 8 is a generic expression that can be transformed into the conventional maximum efficiency formula, Eq. 1. When the constant property model is considered, i.e., \(W_i = 1/2 \), \(Z_{\text{out}} = Z \) (\(Z_{\text{in}} \) or \(Z_{T_{\text{in}}} \)), and \(\tau = 0 \), Eq. 8 yields Eq. 1. In addition, by only taking \(W_j = 1/2 \) and \(\tau = 0 \) to take \((ZT)_{\text{long}} \) without the Thomson effect on heat flux into consideration, Eq. 8 also becomes Eq. 2. Thus, the formulas in this section are generic expressions for maximum efficiency, which can be unrestrictedly applied to any case regardless of the temperature dependence of \(S, \rho, \kappa, \) and \(\tau \).

Fig. 4A shows the maximum efficiency prediction of K-PbTeSe and SnSe according to a temperature gradient by ramping \(T_h \) up to each material’s limit temperature while \(T_c = 50 \, ^\circ\text{C} \), where the solid line indicates the maximum efficiency predicted by a numerical simulation. Fig. 5B shows how relatively accurate the efficiency calculations are compared with the efficiency \(\eta_0 \) by the numerical simulation. The calculation by Eq. 1 overestimates the efficiency by 10% of relative difference for K-PbTeSe at \(T_h = 600 \, ^\circ\text{C} \) and more than twofold for SnSe at \(T_h = 700 \, ^\circ\text{C} \) compared with the numerical prediction. The maximum efficiency by Eq. 2 reduces the difference, but still overestimates by 17% of relative difference for SnSe, whereas K-PbTeSe is underestimated at a similar degree of relative difference from Eq. 1. On the other hand, the maximum efficiency by Eq. 8 is predicted more accurately by 5% and 9% of relative difference for K-PbTeSe and SnSe, respectively, which results from taking not only the effect of \((ZT)_{\text{long}} \) but also the Thomson effect into account. Fig. 5C and D shows the calculated efficiencies and their accuracy with respect to \(\eta_0 \) of HH and SKU, in which the calculated efficiencies of both materials by the three efficiency formulas have good agreement within 4% of relative difference compared with those by numerical simulation. The relatively accurate efficiency and small variation of the prediction for HH and SKU compared with the other materials is caused by the linear-like behavior of their \(S, \rho, \) and \(\kappa \) with low rate of change with respect to temperature. Even though Eq. 1 for HH shows better agreement with the numerical results than Eq. 2, this result is by chance due to offsetting the effects of temperature dependence of \(S, \rho, \) and \(\kappa \) according to the assumption of the constant property model, so it is difficult to analytically predict which material gives rise to the fortuitous type of accurate result by Eq. 1. However, Eq. 8 leads to the most accurate efficiency predictions by the lowest percentages of relative difference—by 5.1% for K-PbTeSe and by 9.5% for SnSe (Fig. 5B), and by 0.4% for HH and by 2% for SKU (Fig. 5D)—resulting from the accounting for cumulative temperature dependence, Thomson effect, and modified intensity of Joule and Thomson heating on the hot side.

The further improvement by Eq. 8 compared with Eq. 2 is associated with the temperature-dependent \(\tau(T) \) representing the intensity of Thomson heat (Fig. 6A). The positive \(\tau \) implying \(d\Delta S/dT > 0 \) contributes to increasing the efficiency with respect to \(\tau = 0 \) (29), where \(\tau \) indicates the intensity of the Thomson effect at each temperature. To examine the \(\Delta T \)-dependent Thomson heating at a large temperature difference, the overall Thomson coefficient at given \(T_h \) and \(T_c \), defined as \(\tau_{\Delta T} = \int_{T_c}^{T_h} \tau(T) dT/\Delta T \), is shown in Fig. 6B, where positive values of \(\tau_{\Delta T} \) for K-PbTeSe, HH, and SKU over the whole temperature range lead to increasing the efficiency compared with that by Eq. 2, so it is closer to the efficiency predicted by numerical analysis. The overall effect of Thomson heating associated with \(\Delta T \) for SnSe differs in temperature boundaries where \(\tau_{\Delta T} \) fluctuates across zero. \(\tau_{\Delta T} \) at 150 °C < \(T_h < 400 \, ^\circ\text{C} \) is positive, so that Eq. 2 underestimates the efficiency more so than Eq. 8, whereas negative \(\tau_{\Delta T} \) above \(T_h = 400 \, ^\circ\text{C} \) gives rise to the overestimated efficiency (Fig. 5A and B). Thus, Eq. 8 can indicate whether the efficiency is over- or underrated compared with that by Eq. 2. However, the efficiency results from the interrelation of conduction and Joule and Thomson heat, as well as the temperature dependence of \(S, \rho, \) and \(\kappa \), so it is difficult to exactly predict the quantified degree of accuracy between Eq. 8 and the numerical simulations. The reasons for the inaccuracy are the linearized expression of \(d\Delta S/dx \), and the different type of temperature dependence, i.e., cumulative in this study and instantaneous in the numerical model.

Fig. 6C and D shows \(\Delta T \)-dependent weight factors for Joule and Thomson heating, respectively, based on the analysis by the cumulative temperature-dependent properties. In Fig. 6C, \(W_T \) of SnSe fluctuates across 1/2 (by the constant property model) while the others monotonically increase over 1/2 with \(T_h \). The increasing \(W_T \) at larger \(\Delta T \) indicates that a larger fraction of Joule heating returns to the hot side than 1/2 of it due to their increasing trend of \(\rho(T) \). \(\Delta T \)-dependent \(W_T \) is shown in Fig. 6D, where \(W_T \) for K-PbTeSe, HH, and SKU have decreasing tendencies and become below 1/2 at certain \(T_h \), which means the effect by Thomson heat on the heat flux at the hot end gets
smaller because their dS/dT decreases. For SnSe, ΔT-dependent W_T (Fig. 6D, Inset) has two diverged points around 150 °C and 400 °C at which $T_{\Delta T}$ becomes zero (Fig. 6B), indicating that no overall Thomson heating through a material at the temperature difference is considered even though Thomson heating exists at each temperature. W_T in Eq. 7 becomes infinite when $T_{\Delta T} = 0$, which seems to make Eq. 9 invalid, but it does not affect the efficiency analysis because W_T is always paired with $T_{\Delta T}$. Thomson heat influences back to the hot sides of HH, SKU, K-PbTeSe, and SnSe are 20.6%, 33.9%, 55.3%, and ~17.3% of Joule heat, respectively, where the negative sign indicates the opposite direction of Joule heat. Because Thomson and Joule heating are electric current dependent, the relative percentage is estimated at the current flow through a cubic-shaped leg ($1 \times 1 \times 1 \, \text{mm}^3$).

Conclusions

We found the unreliability of using ZT to predict efficiency by the conventional efficiency formula that has been commonly used since the 1950s, so we defined $(ZT)_{\text{eng}}$ and $(PF)_{\text{eng}}$ for the realistic evaluation of a TE material’s efficiency and output power, respectively, associated with any practical temperature difference between the cold and hot sides. Based on $(ZT)_{\text{eng}}$, the new efficiency formula was derived, where the degree of Thomson effect can be identified analytically by a enabling one to predict the relative difference of efficiency compared with numerical simulations, even though the formula does not consider the Thomson effect on heat flux evaluation. To supplement the absence of Thomson heat, we also established a formula including Thomson heat by defining the overall Thomson effect $t_{\Delta T}$ through a given temperature difference. This is generic and can be simply converted to the models by constant properties (Eq. (1) as well as cumulative temperature-dependent properties excluding the Thomson effect (Eq. (2)). The ΔT-dependent weight factors lead to practical contributions of Joule and Thomson heat to the heat flux at hot side at a given temperature difference rather than the concept of returning half of them each to the hot and cold sides regardless of boundary temperatures. Therefore, our new efficiency formulas should be used for reliable evaluation of the maximum efficiency of any TE materials. $(PF)_{\text{eng}}$ correctly indicates the intrinsic characteristics for output power generation of thermoelectric materials, and $(ZT)_{\text{eng}}$ is a practical indicator to correctly show the practical efficiency under any temperature difference unlike the average ZTs from the conventional ZT curves. We expect these new formulas will have a profound impact on the search for new materials, the design of devices, and the studies of systems for the energy community.

ACKNOWLEDGMENTS. This work was partially supported by the US Department of Energy (DOE) under Contract DOE DE-FG02-13ER46917/DE-SC0010831 (the part without the Thomson effect) and also partially by Solid State Solar Thermal Energy Conversion Center (S2TEC), an Energy Frontier Research Center funded by the US DOE, Office of Science, Office of Basic Energy Science under Award DE-SC0001299 (the part considering the Thomson effect). The work is also supported in part by US Air Force Office of Scientific Research Grant FA9550-09-1-0056, the T. L. L. Temple Foundation, the John J. and Rebecca Moores Endowment, and the State of Texas through the Texas Center for Superconductivity at the University of Texas at Austin.}