The Harper–Hofstadter Hamiltonian and conical diffraction in photonic lattices with grating assisted tunneling

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

As Published
http://dx.doi.org/10.1088/1367-2630/17/12/125002

Publisher
IOP Publishing

Version
Final published version

Accessed
Wed Dec 19 02:54:58 EST 2018

Citable Link
http://hdl.handle.net/1721.1/101666

Terms of Use
Creative Commons Attribution

Detailed Terms
http://creativecommons.org/licenses/by/3.0/
The Harper–Hofstadter Hamiltonian and conical diffraction in photonic lattices with grating assisted tunneling

This content has been downloaded from IOPscience. Please scroll down to see the full text.

2015 New J. Phys. 17 125002

(http://iopscience.iop.org/1367-2630/17/12/125002)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 18.51.1.3
This content was downloaded on 26/02/2016 at 00:25

Please note that terms and conditions apply.
The Harper–Hofstadter Hamiltonian and conical diffraction in photonic lattices with grating assisted tunneling

Tena Dubček¹, Karlo Lelas¹, Dario Jukić⁴, Robert Pezer⁴, Marin Soljačić⁵ and Hrvoje Buljan¹

¹ Department of Physics, University of Zagreb, Bijenička c. 32, 10000 Zagreb, Croatia
² Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia
³ Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany
⁴ Faculty of Metallurgy, University of Zagreb, Aleja narodnih heroja 3, HR 44 103 Sisak, Croatia
⁵ Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

E-mail: hbuljan@phy.hr

Keywords: synthetic magnetic fields, photonic lattices, topological effects, conical diffraction

Abstract

We propose the realization of a grating assisted tunneling scheme for tunable synthetic magnetic fields in optically induced one- and two-dimensional dielectric photonic lattices. As a signature of the synthetic magnetic fields, we demonstrate conical diffraction patterns in particular realization of these lattices, which possess Dirac points in k-space. We compare the light propagation in these realistic (continuous) systems with the evolution in discrete models representing the Harper–Hofstadter Hamiltonian, and obtain excellent agreement.

1. Introduction

Synthetic magnetism for photons is a unique tool for the manipulation and control of light, and for the design of novel topological phases and states in photonics [1–18]. Topological photonics is a rapidly growing field [18], advancing in parallel to analogous efforts in ultracold atomic gases [19, 20], inspired by the development of topological insulators in condensed matter physics [21]. One motivating aspect of topological photonic systems is the existence of unidirectional backscattering immune states [1–4], which are robust to imperfections, and thus may serve as novel waveguides and for building integrated photonic devices. The first experimental observations of such edge states were in the microwave domain, in magneto-optical photonic crystals [4], theoretically proposed in [1–3]. In the optical domain, imaging of topological edge states was reported in Floquet topological insulators, implemented in modulated honeycomb photonic lattices [5], and in the two-dimensional array of coupled optical–ring resonators [6]. The strategies for obtaining synthetic magnetic/gauge fields and topological phases for optical photons are closely related to the system at hand. In systems of coupled optical resonators, the strategy is to tune the phase of the tunneling between coupled cavities [6–9]; for example, by using link resonators of different length [6, 7], by time-modulation of the coupling [9] or the resonant frequencies of the cavities [8]. Photonic topological insulators were also proposed in superlattices of metamaterials with strong magneto-electric coupling [15]. In 2D photonic lattices (waveguide arrays), pseudomagnetic fields have been demonstrated by inducing strain in optical graphene [10]. Lattice modulation has also been shown to be a fruitful approach in these systems [11–14, 17]. By modulating 1D photonic lattices along the propagation axis, one can choose the sign of the hopping parameter between neighbouring sites, as was realized in a system with alternating positive and negative couplings and resulted in 1D conical diffraction [11]. Transversely modulated waveguide arrays were proposed for the realization of the nonlinear Harper model [12], whereas topological states were achieved in 1D photonic quasicrystals [13]. Moreover, optical analogues of the so called laser assisted tunneling in atomic systems were suggested for creating synthetic magnetic fields in discrete square lattices [14] and recently experimentally studied in laser-fabricated photonic Wannier–Stark ladders [17].

However, all of the above mentioned photonic lattices are in reality continuous dielectric structures. An important test of the viability of a method considered for producing synthetic magnetism is the comparison of
light propagation in a continuous system with the propagation in the corresponding discrete model. Here, we propose the realization of a grating assisted tunneling scheme for tunable synthetic magnetic fields in optically induced one- and two-dimensional dielectric photonic lattices [22–26]. As a signature of the synthetic magnetic fields, we demonstrate conical diffraction patterns in particular realization of these lattices, which possess Dirac points in k-space. We compare the light propagation in these realistic (continuous) systems with the evolution in discrete models representing the Harper–Hofstadter Hamiltonian [31, 32], and obtain excellent agreement.

Methods encountered in photonics are sometimes closely related to methods in other branches of physics. For example, synthetic magnetic fields were created by using ‘strain’ in optical graphene [10], analogously to the scheme with strained real graphene [28]. Furthermore, many of the results obtained with ultracold atoms are viable in photonics, and perhaps even more of them are feasible, because heating by spontaneous emission, which is present in ultracold atomic systems, is absent in photonic systems. The method we consider is analogous to those used in [14, 17]; however, instead of using curved laser written waveguides [14, 17, 29] to create an effective linear tilt of the index of refraction, here we propose to use the optical induction technique and/or a temperature gradient, as elaborated below. All these schemes were inspired by the so called laser assisted tunneling scheme that was implemented in optical lattices with ultracold atoms [33–35]. Laser assisted tunneling is based on theoretical proposals in [36, 37], subsequently developed to experimentally realize the Harper–Hofstadter Hamiltonian [34, 35], and staggered magnetic fields in optical superlattices [33].

Historically, the first synthetic magnetic fields were implemented in rapidly rotating Bose–Einstein condensates (BECs) by using the Coriolis force to mimick the magnetic Lorentz force [38, 39], whereas the first implementation based on laser–atom interactions used spatially dependent Raman optical coupling between internal hyperfine atomic states in bulk BECs [40]. The latter scheme used the analogy between the Aharonov–Bohm and the Berry phase [19, 20]. Beside the schemes with laser assisted tunneling [33–35], methods yielding synthetic magnetism in optical lattices include shaking of the optical lattice [41] and an all-optical scheme which enables flux rectification in optical superlattices [42]. For detailed reviews on synthetic gauge fields and potentials in cold atoms see [19, 20].

2. Results

2.1. The photonic system

We consider the paraxial propagation of light in a photonic lattice defined by the index of refraction

\[n = n_0 + \delta n(x, y, z) \] \(\delta n \ll n_0 \),

where \(n_0 \) is the constant background index of refraction, and \(\delta n(x, y, z) \) describes small spatial variations, which are slow along the propagation z-axis. The slowly varying amplitude of the electric field \(\psi(x, y, z) \) follows the (continuous) Schrödinger equation [26]:

\[
i \frac{\partial \psi}{\partial z} = - \frac{1}{2k} \nabla^2 \psi + \frac{\kappa \delta n}{n_0} \psi;
\]

(1)

here, \(\nabla^2 = \partial_x^2 + \partial_y^2 \), and \(\kappa = 2\pi n_0 / \lambda \), where \(\lambda \) is the wavelength in vacuum. From now on we will refer to \(\delta n(x, y, z) \) as the potential or index of refraction. In the simulations we use \(n_0 = 2.3 \), corresponding to the systems that were used to implement the optical induction technique [23, 24], and \(\lambda = 500 \) nm.

2.2. Grating assisted tunneling and conical diffraction

For clarity, let us first present the grating assisted tunneling method in a 1D photonic lattice. If the potential is a periodic lattice, \(\delta n_l(x) = \delta n_0 (x + a) \), where \(a \) is the lattice constant, and if the lattice is sufficiently ‘deep’, the propagation of light can be approximated by using a discrete Schrödinger equation [26, 43]:

\[
i \frac{d \psi_{m}}{dz} = - \left(I_x \psi_{m-1} + I_x \psi_{m+1} \right),
\]

(2)

where \(I_x \) quantifies the tunneling between adjacent waveguides and \(\psi_{m}(z) \) is the amplitude at the \(m \)th lattice site, i.e., waveguide. To create a synthetic magnetic field, here we use the strategy to tune the phase of the tunneling between lattice sites. For this 1D lattice, we seek a scheme which effectively renormalizes \(I_x \) to get \(K_c \exp(i\phi_m) \), where \(\phi_m \) denotes the phase for tunneling from site \(m \) to site \(m + 1 \). The scheme is illustrated in figure 1. In figure 1(a) we show the potential \(\delta n(x, z) \), which can be modeled as a discrete lattice with complex tunneling parameters \(K_c \exp(i\phi_m) \) shown in figure 1(b).

Let us gradually present this method wherein the index of refraction is varied as in figure 1(a). In figure 1(e), we show the propagation of intensity in a continuous 1D model in the lattice potential \(\delta n_l(x) = \delta n_{10} \cos^2(\pi x/a) \), with \(\psi(0) = \sqrt{I_0} e^{-x^2/2a^2} \). \(\delta n_{10} = 4 \times 10^{-4}, a = 10 \) \(\mu \)m. We see the usual diffraction pattern for a spatially broad excitation covering several lattice sites [26]. Next, suppose that we introduce a linear gradient of index of refraction along the \(x \)-direction \(\delta n_l(x) = - \gamma x \) in addition to the lattice potential, such that \(\delta n = \delta n_l(x) + \delta n_T(x) \). For a sufficiently large tilt, the tunneling is suppressed. This can be seen from
Figure 1. Illustration of the grating assisted tunneling scheme. (a) Sketch of the spatial dependence of the index of refraction \(\delta n(x, z) = \delta n_0 + \delta n_1 + \delta n_{G0} \), which creates a synthetic magnetic field in a photonic lattice. A 1D photonic lattice
\((\delta n_1 = \delta n_{G0} \cos^2(q_x x - \kappa z)/2) \), at a small angle \(\theta \) is on the order of \(\omega \) with respect to the \(z \)-axis. In the \(xz \) plane we plot the variation of \(\delta n(x, z) \), in (a) (blue bold lines), and the grating (green dashed lines). (b) A discrete lattice with complex tunneling matrix elements between sites, \(K_e e^{i\phi_m} \), and spatially dependent phases \(\phi_m \) can model the system in (a). (c) A particular choice of \(\phi_m \), yields a lattice with \(\phi_m = \pi/m \), and a dispersion with a 1D Dirac cone at \(k_z = 0 \). (d) The amplitude of the tunneling \(J_x \) as a function of the strength of the grating \(\delta n_{G0} \), shows that the tunneling (diffraction) is suppressed. (g) The tunneling is restored by an additional grating potential with \(q_x = \pi/a \). (h) Propagation of the wavepacket in the corresponding discrete model illustrated in (c).

figure 1(f) which shows the propagation of intensity in a tilted potential with \(\eta = 0.1 \delta n_{G0}/a \); the tilt should be smaller than the gap between the first two bands. It should be noted that in the context of continuous periodic lattices with strong tilt, the suppression of tunneling can also be interpreted as Bloch oscillations with negligible amplitude. Finally, let us introduce an additional small grating potential at a small angle \(\theta \) with respect to the \(z \)-axis, \(\delta n_G(x, z) = \delta n_{G0} \cos^2((q_x x - \kappa z)/2) \), such that \(\delta n(x, z) = \delta n_0(x) + \delta n_1(x) + \delta n_G(x, z) \). This total potential \(\delta n(x, z) \) is illustrated in figure 1(a). The ‘frequency’ \(\kappa \) is determined by the angle \(\theta \) of the grating with respect to the \(z \)-axis, which is chosen such that \(\kappa = \eta q k/n_0 \) and the grating forms a \(z \)-dependent perturbation resonant with the index offset between neighboring lattice sites \(\eta \) (figure 1(a)). The grating restores the tunneling along the \(x \)-axis, hence the term grating assisted tunneling. Restored tunneling is seen in figure 1(g) which shows diffraction for identical initial conditions as in figures 1(e) and (f); the grating parameters are \(q_x = \pi/a \) and \(\delta n_{G0} = 0.1 \delta n_{G0} \).

However, the diffraction pattern is drastically changed. In order to interpret it, we point out that, for resonant tunneling where \(\kappa = \eta q k/n_0 \) and a sufficiently large tilt \((\eta \ll \kappa) \), \(z \)-averaging over the rapidly oscillating terms shows that the system can be modeled by an effective discrete Schrödinger equation (e.g., see [34] for ultracold atoms):

\[
\frac{d\psi_m}{dz} = - \left(K_e e^{i\phi_{m+1}} \psi_{m-1} + K_e e^{-i\phi_m} \psi_{m+1} \right),
\]

where \(\phi_m = q \cdot R_m = q_x m a \). In figure 1(g) we used \(q_x = \pi/a \), i.e., \(\phi_m = m\pi \). Such a discrete lattice is illustrated in figure 1(c); its dispersion having a 1D Dirac cone at \(k_z = 0 \). For a wavepacket that initially excites modes close to \(k_z = 0 \), the diffraction in the discrete model (3) yields the so-called (1D) conical diffraction pattern [11], as illustrated in figure 1(h). The initial conditions for propagation in the discrete model correspond to the initial conditions in the continuous system, \(\psi_0(0) = \sqrt{I} e^{-i\phi_0} \), and \(K_e = 0.053 \text{ mm}^{-1} \). Thus, we interpret the diffraction pattern in figure 1(g) as 1D conical diffraction, a signature of the discrete model depicted in figure 1(g). A comparison of the discrete (figure 1(h)) and the realistic continuous model (figure 1(g)), clearly shows that we can use grating assisted tunneling to tune the phases of the tunneling parameters in the discrete Schrödinger equation, thereby realizing synthetic magnetic fields.

Before proceeding to 2D systems, we discuss the amplitude of the tunneling matrix elements \(K_e \) as a function of the strength of the grating \(\delta n_{G0} \). Figure 1(d) shows \(K_e \) (green squares) and \(J_x \) (blue circles) versus \(\delta n_{G0} \), where \(J_x \)
corresponds to the potential which includes the lattice and the grating, but no tilt. The amplitudes I_x and K_x are obtained by comparing the diffraction pattern of the discrete with the continuous model, and adjusting I_x and K_x until the two patterns coincide, as in figures 1(g) and (h). Our results in figure 1(d) are in agreement with those in ultracold atoms (e.g., see figure 3(a) in [34]).

The extension of the scheme to 2D lattices is straightforward. We consider a square lattice, $\delta n_L = \delta n_{1,0}(\cos^2(\pi x/a) + \cos^2(\pi y/a))$, the tilt in the x-direction, $\delta n_T(x) = -\eta x$, and the grating which has the form $\delta n_G(x, y, z) = \delta n_G \cos^2(\frac{q_y x + q_y y - \kappa z}{2})$. Propagation of light in the total potential $\delta n(x, y, z) = \delta n_L(x, y) + \delta n_T(x) + \delta n_G(x, y, z)$ can be modeled by the discrete Schrödinger equation (the derivation is equivalent to that in [34] for ultracold atoms):

$$i \frac{d\psi_{m,n}}{dz} = -\left(K_x e^{i\phi_{m,n-1}} \psi_{m-1,n} + K_x e^{-i\phi_{m,n}} \psi_{m+1,n} + I_x \psi_{m,n-1} + J_x \psi_{m,n+1} \right),$$

where $\phi_{m,n} = q \cdot R_{m,n} = q_x ma + q_y na$. Note that the tunneling along y does not yield a phase because there is no tilt in the y direction; the tunneling amplitude along y depends on the depth of the grating, as illustrated in figure 1(d) with blue circles.

In order to demonstrate that the propagation of light in the continuous 2D potential $\delta n(x, y, z)$ is indeed equivalent to the dynamics of equation (4), we compare propagation in the discrete model (4), with that of the continuous equation (1). The lattice parameters are $\delta n_{1,0} = 4 \times 10^{-4}$, $a = 13 \mu m$; the tilt is given by $\eta = 0.1 \delta n_{1,0}/a$; the grating is defined by $\delta n_G = 0.17 \delta n_{1,0}$ and $q_y = -q_x = \pi \mu m$, which yields $\phi_{m,n} = (m-n)\pi$, and κ is chosen to yield resonant tunneling. The discrete lattice which corresponds to this choice of phases is illustrated in figure 2(a). It has two bands, $\beta = \pm 2\sqrt{K_x^2 \sin^2(k_x a) + I_x^2 \cos^2(k_y a)}$ (\beta is the propagation constant), touching at two 2D Dirac points at $(k_x, k_y) = (0, \pm \pi/2a)$ in the Brillouin zone [44], as depicted in figure 2(b). Suppose that the incoming beam at $z = 0$, excites the modes which are in the vicinity of these two Dirac points. Around these points, for a given $\mathbf{k} = k/k$, the group velocity, $\nabla_k \beta(k_x, k_y)$, is constant. Thus, the beam will undergo conical diffraction, which has been thoroughly addressed with Dirac points in honeycomb optical lattices [27]. To demonstrate this effect, we consider the propagation of a beam with the
initial profile given by $\psi(x, y, 0) = \sqrt{I} \cos(\pi y / 2a) \exp(-(x/3a)^2 - (y/3a)^2)$ in the 2D potential $\delta n(x, y, z)$ (the cosine term ensures that we excite modes close to the two Dirac points). In figure 2(c) we show this beam after propagation for $z = 162$ mm. The two concentric rings are a clear evidence of conical diffraction [27, 30]. We also compare this with the propagation in the discrete model (4), with tunneling phases plotted in figure 2(a); $K_x = 0.11 \text{ mm}^{-1}, J_y = 0.14 \text{ mm}^{-1}$. The results of the propagation in the discrete model are shown in figure 2(d). It is evident that for our choice of the tilt and the grating, we have effectively realized the lattice plotted in 2(a). This is in fact a realization of the Harper–Hofstadter Hamiltonian for $\alpha = 1/2$, where α is the flux per plaquette in units of the flux quantum [34, 35].

2.3. Proposal for experimental realization

For the experimental implementation of the scheme, we propose the so-called optical induction technique in photosensitive materials, which can be implemented in photorefractives [22–26]. In these systems, both the lattice $\delta n_L(x, y)$ and the grating potential $\delta n_G(x, y, z)$ can be obtained in a straightforward fashion by using interference of plane waves in the medium [26]. The lattice constant a, the grating parameter q, and hence the hopping phase $\phi_{m,n} = q \cdot \mathbf{R}_{m,n}$, are tunable by changing the angle between the interfering beams. This could enable manipulation of the phases of the tunneling matrix elements in real time [23].

The most challenging part of the implementation appears to be creation of the linear tilt potential. To observe the conical diffraction effects, one needs a linear gradient over the ~20 lattice sites, which implies a total index tilt $\Delta n = 20a/ \sim \times 10^{-4}$. In principle, the linear tilt could be achieved by using a spatial light modulator. Another possibility which could create a linear tilt is to use crystals with linear dependence of the index of refraction on temperature, and a temperature gradient across the crystal [46].

However, it should be emphasized that if one uses a superlattice for δn_L, rather than the linear tilt potential, as in [33] for ultracold atomic gases, the grating assisted tunneling scheme proposed here would yield staggered synthetic magnetic fields for photons. The achievement of such staggered fields should be possible with optically induced lattices proposed here.

2.4. On the phase between the lattice and the grating

Before closing, we emphasize that the spatial phase between the periodic lattice potential δn_L and the grating δn_G is a relevant parameter. This point has recently been examined in detail in the context of ultracold atoms [45]. To translate it to our system, suppose that in our 1D system, we shift the grating along the x-direction, such that $\delta n_G = \delta n_G_0 \cos^2((q_x x - \kappa z + \xi)/2).$ This simply shifts the phases in the discrete lattice (shown in figure 1(c)) such that ϕ_m is replaced by $\phi_m + \xi$, which moves the 1D Dirac point in k_x-space by $\Delta k_x = \xi/a$. We have numerically verified that this indeed happens.

3. Conclusion

In conclusion, we have proposed the grating assisted tunneling scheme for tunable synthetic magnetic fields in optically induced one- and two-dimensional dielectric photonic lattices. As a signature of the synthetic magnetic fields and the Dirac points that these lattices possess in k-space, we have demonstrated conical diffraction patterns (shown in figures 1(c) and 2(a)). The excellent agreement between our results for light propagation in realistic (continuous) systems and the evolution in the corresponding discrete models, clearly confirms that the 2D dielectric photonic lattice with grating assisted tunneling constitutes the realization of the Harper–Hofstadter Hamiltonian. We envision that this approach can open the way for other studies of light propagation in tailored dielectric structures (including nonlinear propagation, solitons, instabilities and the creation of synthetic dimensions [47]) being mapped on intriguing discrete models with complex tunneling matrix elements and synthetic magnetic fields.

Acknowledgments

This work was supported by the Unity through Knowledge Fund (UKF Grant No 5/13). Work by MS (analysis and proof-reading of the manuscript) was supported as a part of S3TEC, and EFRC, funded by US DOE, under Award Number DE-SC0001299 / DE-FG02-09ER46577. This work was also supported in part by the US Army Research Laboratory and the US Army Research Office through the Institute for Soldier Nanotechnologies, under Contract No W911NF-13-D-0001. We are grateful to Colin J Kennedy, Wolfgang Ketterle, Ling Lu and Mordechai Segev for useful conversations.
References

[16] Lu L, Fu L, Joannopoulos J D and Soljačić M 2013 Weyl points and line nodes in gyroid photonic crystals Nat. Photonics 7 294

[18] Lü L, Joannopoulos J D and Soljačić M 2014 Topological photonics Nat. Photonics 8 821

[37] Kolovsky A R 2011 Creating artificial magnetic fields for cold atoms by photon-assisted tunneling Europhys. Lett. 93 003

