Mayoral Partisanship and the Size of Municipal Government

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1086/686308</td>
</tr>
<tr>
<td>Publisher</td>
<td>University of Chicago Press</td>
</tr>
<tr>
<td>Version</td>
<td>Original manuscript</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sat Dec 08 10:43:51 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/107802</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution-Noncommercial-Share Alike</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by-nc-sa/4.0/</td>
</tr>
</tbody>
</table>
Mayoral Partisanship and the Size of Municipal Government

Justin de Benedictis-Kessner* Christopher Warshaw†

August 31, 2015

Abstract

Does it matter for municipal fiscal policies which party controls the mayorship in municipal government? The bulk of the existing evidence says no. But there are a variety of theoretical reasons to believe that mayoral partisanship should affect municipal policy outcomes. In this paper, we examine this question using data on nearly 1000 elections in medium and large cities over the past 60 years. In contrast to previous work, we find that mayoral partisanship has a significant impact on the size of municipal government. Overall, Democratic mayors spend more than Republican mayors. The bulk of this additional spending comes on roads, housing, libraries, and interest. We find a modest impact of mayoral partisanship on city tax levels. However, Democratic mayors issue substantially more debt than Republican ones. They also spend much more to service interest on debt. Our findings show that mayoral partisanship matters for city policy. Moreover, our findings add to a growing literature indicating that the constraints imposed on city policymaking do not prevent public opinion and elections from having a meaningful impact on municipal policy.

*PhD Candidate, Department of Political Science, MIT, jdbk@mit.edu
†Assistant Professor, Department of Political Science, MIT, cwarshaw@mit.edu

We appreciate the research assistance of Melissa Meek, Olivia Zhao, Dylan DiGiacomo-Stumm, and Szabolcs Kiss. We appreciate feedback on earlier versions of this manuscript from Chris Taussanovitch, Dan Hopkins, Katherine Einstein, David Glick, and Melissa Sands. We also appreciate the willingness of Fernando Ferreira, Joseph Gyourko, Elisabeth Gerber, and Dan Hopkins to share their data. All mistakes, however, are our own.
1 Introduction

A number of recent studies have found that municipal policy outcomes are responsive to the opinion and partisanship of the mass public (Einstein and Kogan, 2015; Palus, 2010; Tausanovitch and Warshaw, 2014). More liberal cities spend substantially more than conservatives cities and levy higher taxes on their citizens. A plausible mechanism for the link between public opinion and municipal policy outcomes is that more liberal cities tend to elect more Democratic mayors, who then expand the size of government. Several recent studies, however, suggest that the mayor has no effect on the size of municipal government (Ferreira and Gyourko, 2009) or the share of spending that goes to a variety of specific policy areas (Gerber and Hopkins, 2011). This line of work emphasizes the economic, political, and legal constraints facing local policymakers (Gerber and Hopkins, 2011; Nivola, 2002; Peterson, 1981, 1995; Rae, 2003; Self, 2003). The juxtaposition of these two lines of research raises a puzzle. How does representation in municipal government work if partisan selection in elections is not affecting policy outcomes?

To resolve this puzzle, we use the largest and most comprehensive dataset of municipal elections compiled to-date to examine the effect of mayoral partisanship on the size of municipal government in cities with more than 75,000 people. Our dataset of mayoral election returns includes over 3,000 electoral contests across 307 cities over the past six decades. It spans a larger time period and a much greater number of medium and large cities than previous studies, which gives us much more statistical power than previous work to identify the precise effect of mayoral partisanship on the size of municipal government. Next, we use a regression-discontinuity design to estimate the causal effect of electing a Democratic versus Republican mayor on city policies (Ferreira and Gyourko, 2009; Gerber and Hopkins, 2011). For this analysis, we focus on approximately 1,000 elections in 203 cities where the top two candidates in the election were a Democrat and a Republican.
In contrast to previous research, we find that electing a Democratic mayor over a Republican mayor leads to an increase in per capita municipal expenditures, as well as additional spending in a variety of specific program areas.\(^1\) We find that Democratic mayors modestly increase per capita taxes. The bulk of the expansion in the size of government under Democratic mayors, however, appears to be paid for by increasing debt. Indeed, Democratic mayors issue substantially more debt than Republican mayors, and cities with Democratic mayors pay more interest to service this debt. These findings are robust across different time horizons, periods of history, and cities of different sizes.

Overall, we conclude that mayoral elections matter for policy. At a broader level, our results indicate that partisanship plays a role in local politics in much the same way that it does in the United States at the state and federal levels. The constraints imposed on city policymaking do not prevent public opinion and elections from having a meaningful impact on municipal policy. Our findings suggest that one of the mechanisms for the link between public opinion and policy is that more liberal cities tend to elect more Democratic mayors, who then expand the size of government.

The paper proceeds as follows. First, we discuss previous literature on representation and elections in municipal government. Next, we discuss our data and research design. Then, we present our findings on the impact of mayoral partisanship on the size of municipal government. We also discuss a number of robustness checks, and we examine whether the impact of mayoral partisanship varies across institutional contexts. Finally, we briefly conclude and discuss the implications for future research.

\(^1\)The comparison of Democratic victories to Republican victories is arbitrary, as all estimates provide the impact of one party’s victory relative to a victory by the other party.
2 Background

There is a large literature at the state and federal levels showing that there are substantial differences between Democratic and Republican elected officials. Democrats in both Congress and state legislatures have much more liberal roll call voting records than Republicans (Lee, Moretti, and Butler, 2004; Shor and McCarty, 2011). Moreover, the election of a Democratic governor or state legislative majority leads state policy outcomes to shift to the left (Caughey, Warshaw, and Xu, 2015). This suggests that mayoral partisanship should have an effect on municipal policy.

However, the literature on local governments suggests that partisanship acts differently at lower levels of government than on the national stage. Some have even gone so far as to say that local-level politics is divorced from the partisan conflict prevalent in national policy-making because of the nature of the issues that local politics deals with. As Adrian (1952) puts it, there is “no Republican way to pave a street and no Democratic way to lay a sewer” (766). If this assertion is true, then there would be little reason to expect partisan control of city governments to matter.

In addition, cities are restricted due to statutory constraints (Ladd and Yinger, 1989), economic competition with other cities (Peterson, 1981), and sorting of citizens into places that provide favorable policies (Tiebout, 1956). Furthermore, city governments typically overlap with other jurisdictions in the responsibility for providing services to citizens locally (Ferreira and Gyourko, 2009; Peterson, 1995). These constraints could mute the impact of mayoral partisanship on policy (Gerber and Hopkins, 2011).

To date, the bulk of the research on partisan control of city governments supports the view that the partisanship of city officials does not matter much. Ferreira and Gyourko (2009) investigate the effect of mayoral partisanship on fiscal policies based on data from a survey of all cities in the United States with a population above 25,000 in the year 2000. Using a regression discontinuity design, they find that mayoral
partisanship has no effect on the size of municipal government. They attribute their null findings to the relative homogeneity of preferences within a given city (Tiebout, 1956). However, another potential explanation for their null results is that their data includes many small towns and cities (Gerber and Hopkins, 2011, 331). In fact, the majority of the cities in their dataset had fewer than 75,000 people in 2000. In addition, their dataset does not include many large cities (e.g., Boston, Chicago, Pittsburgh) where we might expect to see the largest effects of mayors.

Gerber and Hopkins (2011) examine the impact of municipal partisanship on the allocation of city spending and revenues in large cities with a population greater than 170,000 people between 1990 and 2010. Using a regression discontinuity design, they demonstrate that narrowly electing a Democratic mayor leads to a decrease in the share of expenditures that cities devote to police and fire protection spending. But they find no other effects of partisan control of city governments on the share of expenditures going to different areas or the share of revenues from various sources.\(^2\) However, it is important to note that their analysis is based on a relatively small sample size of cities, which greatly limits their statistical power.\(^3\) Indeed, Gelman, Hill, and Yajima (2012) show that the combination of multiple outcome variables and low statistical power can lead to inferential errors about effect magnitudes because only a few unusually large point estimates will pop out as significant.

In stark contrast to the literature that focuses on the constraints on urban policymakers, another line of literature emphasizes the link between the mass public and city policies. Tausanovitch and Warshaw (2014) show that public opinion on city policies is strongly linked to national-level cleavages. Moreover, a variety of studies show that city policies are responsive to the views of their citizens. Percival, Johnson, and Neiman (2009) shows an association between county-level ideology and

\(^2\)Using a similar dataset and research design, Hopkins and McCabe (2012) find that electing a black mayor instead of a white one leads cities to devote less resources to police protection.

\(^3\)They only have 134 observations in their main analysis.
several policy outputs in California counties. Einstein and Kogan (2015) similarly find a correlation between the partisan preferences of local constituencies and the fiscal policies that city governments produce. More recent advances in the estimation of public opinion at the local level have led to even more evidence of a connection between citizens and government. Tausanovitch and Warshaw (2014) show that city government is responsive to public opinion. The conclusion of these papers is that state and local governments are responsive to the policy preferences of their citizens. Is this responsiveness due to partisan selection in mayoral elections? Or is it due to the convergence of mayoral candidates to the preferences of the median voter?

3 Theory and Hypotheses

We begin with the assumption that a mayor’s partisanship influences his or her personal fiscal policy preferences and that the mapping between a mayor’s partisanship and policy preferences will be related to the distribution of fiscal preferences across parties that exists at the national level (Gerber and Hopkins, 2011). A variety of previous work indicates that political parties are coalitions of officeholders that coordinate across levels of government (Aldrich, 1995). Indeed, Republican legislators have more conservative ideal points in both Congress and state legislatures (Lee, Moretti, and Butler, 2004; Shor and McCarty, 2011). Moreover, the election of a Democratic governor or state legislative majority leads state policy outcomes to shift to the left (Caughey, Warshaw, and Xu, 2015). We expect similar tendencies to hold at the municipal level. The best evidence for the fact that Democratic mayors tend to have more liberal preferences on fiscal issues comes from Einstein and Glick (2014). They conducted a survey of over 70 American mayors – including many from the nation’s largest cities – to directly measure when and why mayors prioritize redistribution. They find that Democratic mayors are much more likely to list socioeconomic
inequality as one of their top two policy issues. The implications of this previous work are clear: in the absence of constraints, Democratic mayors are likely to seek higher levels of municipal spending than Republican mayors.

H1a: Relative to Republican mayors, Democratic mayors increase the size of municipal government by increasing municipal spending.

Of course, mayors are constrained by a multitude of factors. Most importantly, there are a variety of state institutions that constrain municipal tax and revenue policies (Ladd and Yinger, 1989, Chapter 6, Mullins and Wallin, 2004). Indeed, many states have passed limits on municipalities’ ability to levy property taxes (Ladd and Yinger, 1989, 136-137). Some states limit property tax revenues relative to property value, while others limit municipalities’ ability to increase property tax rates or property assessments (Mullins and Cox, 1995; Mullins and Wallin, 2004). Moreover, about a quarter of states ban local municipalities from levying sales taxes on their citizens, and almost every state imposes some limits on sales tax levels (NCSL, 1997).

H1b: Due to the multitude of constraints on new taxes, Democratic mayors have a smaller effect on municipal tax revenues than on expenditures.

Given the many constraints on new taxes, the best way for mayors to increase spending may be to issue more municipal debt. When tax and expenditure limitations were imposed, many cities shifted away from traditional sources of revenue towards bonds to fund capital improvements because the debt service on these bonds was often exempt from these limits. In the twelve states that impose overall property tax limits, for instance, nine of them exempt debt service from these limits (Mullins and Cox, 1995). Despite the fact that many states limit new municipal debt, cities can often find creative ways to bypass debt limits. They can issue different types of revenue bonds that are not limited, such as non-guaranteed debt, which circumvents state methods of constraining city spending (Hildreth and Zorn, 2005; Aronson and Hilley, 1986). As a result, mayors that wish to spend money will finance these expenditures
by issuing debt. We therefore expect Democratic mayors to issue more debt than Republican mayors.

\textit{H2: Relative to Republican mayors, Democratic mayors increase municipal debt.}

We also expect that municipal institutions may matter for the ability of mayors to change policy (Hajnal and Trounstine, 2010). Progressive reforms, such as the imposition of nonpartisan ballots in municipal elections and the appointment of city executives rather than an elected chief executive, were instituted in many places to insulate local governments from the changing wishes of the population. Many reformers hoped to decrease the power of parties, and thought these institutions would decrease the entrenched nature of city government. Past research has indicated that appointed city manager systems may increase efficiency (Stein, 1990), but also that they may be less responsive to the preferences of their citizens compared to elected mayor systems (Lubell et al., 2009). As a requirement for mayors to change policy, we might expect that they could only do this if they have the resources to transform their ideological priorities into outcomes. In cities with the strong mayor form of government, mayors have a logical increase in their autonomy, whereas in council-manager systems, the mayorship is considered to be a figurehead position (Wolman, Strate, and Melchior, 1996). This leads to the following hypothesis:

\textit{H3: The election of a Democratic mayor will have a larger impact on fiscal outcomes in cities with strong mayor systems than in cities with council-manager systems.}

Nonpartisan elections, which have been instituted in the majority of U.S. cities, might naturally influence the effect of partisanship on local policies (Gerber and Hopkins, 2011). Those candidates who run under a party label in officially partisan elections might be able to change policy without fear of revealing their partisan preferences to voters in a subsequent nonpartisan election. On the other hand, mayors that are elected in nonpartisan elections might restrain their underlying policy preferences in order to avoid alienating voters, and might be more responsive to the wishes
of the median voter (Caldarone, Canes-Wrone, and Clark, 2009). Furthermore, the imposition of nonpartisan ballots was intended to remove the influence of party on local elected officials and might reduce the tendency of mayors to adopt policies in line with national political cleavages (Bledsoe and Welch, 1987; Welch and Bledsoe, 1986). We therefore examine the following hypothesis:

\[H_4: \text{The election of a Democratic mayor will have a larger impact on fiscal outcomes in cities with partisan elections than in cities with nonpartisan elections.} \]

4 Data and Research Design

Previous research has been limited in its scope, focusing on a small number of cities or a limited range of time. We improve upon this by broadening the set of cities and by using a design-based causal identification strategy (Keele, 2015) to isolate the impact of changing partisan control of city governments on the size of municipal government.

The target universe for our study is cities with more than 75,000 people in the year of a mayoral election. This means that a growing city would enter our target universe when its population reached 75,000 people, while a shrinking city would leave our target universe when its population dipped below this threshold.\(^4\) There were 380 cities with more than 75,000 people in the year 2000. This is a diverse array of cities. It includes cities such as Utica, NY, and Tracy, CA, at the smaller end, as well as large cities like New York, Los Angeles, and Chicago at the upper end of the spectrum. We focus on medium and large cities because these municipalities are likely to have more fiscal flexibility than smaller cities and towns. In addition, this is the minimum size city that appears in the Census’s Historical Data Base of Individual Government Finances every year.\(^5\) Finally, it is much easier to collect municipal elections data for

\(^4\)Contrast our strategy with Gerber and Hopkins (2011) whose target universe was the “130 largest U.S. cities as identified by the U.S. Census Bureau in 2007,” which effectively meant those cities over 170,000 in population, and Ferreira and Gyourko (2009) whose target universe was cities and towns with more than 25,000 people in 2000.

\(^5\)Indeed, cities below this size are only in the Census finance data every several years because the
medium and large cities than for smaller cities and towns.6

\subsection{Municipal Election Data}

The major hurdle to studying local elections has been a paucity of data (Trounstine, 2009). In this paper, we build a dataset of mayoral election returns that spans a larger time period and a greater number of cities than in any previous research. For each mayoral election in cities in our target universe, we sought information on when the election occurred, the votes received by the top two candidates, and the candidates’ party affiliations. We coded candidates’ partisanship based on any clear indicators that candidates’ leaned toward one of the two parties. These indicators included past or future partisan elected offices that a candidate held, mentions in historical newspaper articles of their partisanship, and campaign-donation-based data. For instance, we would code a candidate as a Democrat if they ran for state legislature as a Democrat prior to running for mayor. We would also code a candidate with a “liberal” campaign finance (CF) score as a Democrat.7 Where cities elect mayors through a run-off system, we included the results of the final election.

We built the foundation of our database of municipal elections by merging the data on elections from 1950-2005 from Ferreira and Gyourko (2009), data on elections between 1989-2010 from Gerber and Hopkins (2011), data that we collected from the website OurCampaigns.com, which includes elections between 1950 and 2014, and campaign finance-based measures of candidates’ party ID (CF-Scores) between 1980 and 2012 (Bonica, 2014).8 In order to reduce errors or discrepancies in these sources, we checked for conflicts between the four sources, and identified those elections where

6Census employs a rotating sample strategy for smaller cities and towns.

6In our preliminary research, we found that it was nearly impossible to find election results for most cities with fewer than 75,000 people since these elections are often not covered by the news media. Hopkins and Pettingill (2015) also notes the difficulty of obtaining election results for smaller cities.

7Hill and Huber (2015) shows that CFscores are extremely accurate proxies for individuals’ party identification.

8The full details of this process are available in the Supplementary Appendix.
any of the four disagree on either vote shares or partisan information. We then conducted a search of online sources and news archives to correct these discrepancies. We therefore have partisan information for officially partisan races or other races where party appeared on the ballot, as well as many officially nonpartisan races.

Figure 1: Cities in Election Dataset

Of the target universe, we recovered some information for 3,059 mayoral elections taking place in 307 cities. However, many of these elections matched a major party candidate against an Independent or nonpartisan candidate. In other cases, we were not able to recover both candidates’ party identification. Our final sample consists

\footnote{In the supplemental appendix, we compare our sample of cities with the target universe of cities with more than 75,000 people. Overall, we find no substantively large differences between our sample and the target population}
of the 980 contests in 203 cities where we could identify the top two-vote getters as a Democrat and a Republican.10 The Democrat won in 63\% of the mayoral elections in our main sample. One important feature of the data is the large number of close mayoral elections. In nearly a third of the elections in our main sample (315 out of 980), the winning margin is below 5\%.

The cities in our main sample contain over 30\% of the United States population. This dataset is, to our knowledge, the most comprehensive available set of information on mayoral elections for medium and large U.S. cities over the past sixty-five years. Each of the cities that appear in our data are shown visually in Figure 1, with the largest city in each state and all cities with populations over 500,000 people in the year 2000 labeled. Our data contains cities from 46 different states.

4.2 Municipal Fiscal Data

To study the impact of mayors on city fiscal outcomes, we use fiscal data from the Historical Data Base of Individual Government Finances. These data are based on a Census of Governments conducted every five years and the Annual Survey of Governments collected in every noncensus year. These data provide detailed revenue, expenditure, and employment data for U.S. local governments.11 We adjusted all monetary figures into 2012 dollars. We also adjusted for cost-of-living differences between states (Berry, Fording, and Hanson, 2000).12 In our main analysis, we use per capita expenditures and revenues to account for population differences across cities.13

10Our quantity of interest – the impact of electing a Democrat over a Republican – is identified only for this subsample.

11For our RDD analysis on the causal impact of mayors, it is crucial to accurately assign fiscal data to the appropriate year. As a result, we dropped a small number observations from the Annual Survey of Government Finances where we could not determine the year in which fiscal data was collected.

12We obtain substantively similar results if we do not adjust for cost-of-living differences between states.

13One challenge in focusing on per capita figures is that annual population figures are often unavailable between the decennial censuses. As a result, we conduct a linear interpolation of population figures provided by the Annual Survey of Government Finances for years in which annual popula-
However, we obtain similar results when we focus on the share of total spending or revenues in particular categories.

We focus much of our analysis on total per capita expenditures because this measure captures the size of government, one of the core ‘liberal-conservative’ issues in American politics (Ellis and Stimson, 2012, 3-4). On average, cities with Democratic mayors spend about $2,015 per capita, while cities with Republican mayors spend about $1,650 per capita. Whether the correlation between mayoral partisanship and the size of municipal government is causal—rather than due to differences in the economy or other contextual features of municipal government—is the subject of the empirical analyses in the following sections.

We also analyze the impact of mayoral partisanship on individual spending categories, such as roads, housing, libraries, parks, and interest on debt. This enables us to see the areas where mayoral partisanship matters for municipal spending. In addition, we examine the impact of mayoral partisanship on total city revenue, as well as aggregate tax collections, property taxes, sales taxes, and city debt levels.

4.3 Municipal Institutions Data

In order to assess the impact of different institutions at the city level, we gather data on the form of government and whether cities have partisan or nonpartisan elections during the elections in our data. These data are from the International City/County Management Association’s (ICMA) Form of Government surveys. The ICMA collected these institutional data every 5 years from 1981 to the present via a survey of city and county government officials. We develop a panel dataset of municipal institutions from the surveys in 1981, 1986, 1991, 1996, 2001, 2006, and 2011 by interpolating data points for years between surveys from the most recent survey conducted. For years before 1981, we use the 1981 survey data, and for years in which the survey does not have a response for a given city we use the
have responses for each city about the timing of elections, as well as the composition of city government. They also record whether a city has a strong mayor system or a council-manager form of government. In addition, the surveys ask whether partisan labels appear on the ballot in municipal elections. We use the form of government and partisan elections responses to assess the differential impact of mayoral partisanship in cities with different institutions.

4.4 Regression Discontinuity Design

We use a regression discontinuity design (RDD) to identify the effect of mayoral partisanship on the size of municipal government. We exploit the fact that the probability of a Democrat occupying that office changes discontinuously at 50% of the two-party mayoral vote share (Ferreira and Gyourko, 2009; Gerber and Hopkins, 2011).\(^\text{16}\) Around this discontinuity, the winner is likely to be determined by pure chance as long as there is some unpredictable component of the ultimate vote (Lee, 2008). Thus, the winner of these narrow races is quasi-random. By emulating a random experiment, our regression discontinuity design enables us to causally identify the local average treatment effect of electing a Democratic mayor rather than a Republican mayor on the size of municipal government and other city fiscal outcomes.\(^\text{17}\)

The key identifying assumption of the RD design is that the distribution of units’ potential outcomes is continuous at the treatment threshold (Hahn, Todd, and Klaauw, 2001). The main estimation challenge is modeling the “jump” in the outcome variable at the threshold. The current best practice is to model the relation-%

\(^{16}\) The fact that this is a “local” average treatment effect indicates that we are not estimating the overall impact of electing a Democrat, but instead the impact of a razor-tight Democratic victory (Gerber and Hopkins, 2011).

\(^{17}\) Previous studies in the urban politics literature have also used the regression discontinuity design to examine the local incumbency advantage (Ferreira and Gyourko, 2009; Trounstine, 2011), the effect of black mayors on city policy outcomes (Hopkins and McCabe, 2012), and the effect of female mayors on policy outcomes (Ferreira and Gyourko, 2014).
ship between the assignment and outcome variables with local linear regression, using a bandwidth chosen to minimize mean-square-error (MSE) and adjusting confidence intervals to account for remaining bias (Calonico, Cattaneo, and Titiunik (2014b); see also Imbens and Kalyanaraman (2012)).

In some electoral settings the continuity assumption appears to be violated due to incumbents’ ability to win narrow victories (Caughey and Sekhon, 2011). However, Eggers et al. (2015) find no evidence of pro-incumbent sorting in close mayoral races. Consistent with these findings, we find no discontinuities in the partisan composition of the city government at the time of the mayoral election (Table 1, rows 1–4). We also find no discontinuities in contemporaneous spending (row 5). Thus, the RD design appears to be well suited for examining the impact of mayoral partisanship on city fiscal outcomes.

Lee and Lemieux (2010, 331–3) suggest differencing the dependent variable in RD designs as a way to increase statistical efficiency. Following this approach, we estimate treatment effects on changes in fiscal outcomes rather than on levels.\(^{18}\) Specifically, our main analysis focuses on the difference between fiscal outcomes in the year the mayor was elected and two years after the election.\(^{19}\)

<table>
<thead>
<tr>
<th>Table 1: Covariate continuity tests for the mayoral RD design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Democratic Mayor in t-2</td>
</tr>
<tr>
<td>Democratic Mayor in t-4</td>
</tr>
<tr>
<td>Democratic Vote Share in t-2</td>
</tr>
<tr>
<td>Democratic Vote Share in t-4</td>
</tr>
<tr>
<td>Total Expenditures (t)</td>
</tr>
</tbody>
</table>

Estimated using the default local-linear regression bandwidth (BW) and robust confidence intervals calculated by \texttt{rdrobust} (Calonico, Cattaneo, and Titiunik, 2014a).

\(^{18}\)Gerber and Hopkins (2011) use a similar approach.

\(^{19}\)We obtain similar results if we focus on the difference between fiscal outcomes in the year the mayor was elected and 3-6 years after the election.
5 Main Results

In this section, we present our main results based on a regression discontinuity design (RDD). First, we analyze the effect of electing a Democratic mayor on the size of municipal government. We find that Democratic mayors in medium and large cities spend $111 more per capita than Republican mayors (Figure 1). The average city in our data spends about $1,819 per capita in total expenditures. So Democratic mayors increase the average city’s spending by 6%. This is equivalent to about one tenth of the cross-sectional standard deviation in per capita expenditures between cities. We also find that, relative to Republican mayors, Democratic mayors increase general expenditures by $94 per capita, which is equivalent to a 6% increase in general expenditures.

Next, we turn to the effect of Democratic mayors on the allocation of spending across different policy areas. Table 2 shows the point estimates from our regression discontinuity models of the effect of mayoral partisanship on city spending, as well as other details of the models, such as the bandwidth, robust confidence intervals, and p-values. We find that Democratic mayors affect municipal spending across a number of different policy areas. Democratic mayors spend $23 more per capita on roads per capita than Republican mayors. This is equivalent to a 22% increase in road spending. Democratic mayors also increase housing spending by $23 per capita (30%) and library spending by $4 per capita (19%). Finally, we find that Democratic mayors increase interest payments by $25 per capita (22%) compared to Republican mayors.

In contrast to Gerber and Hopkins (2011), we find no statistically significant evidence that Democratic mayors decrease spending on police or fire protection relative

20 On the log scale, we find that Democratic mayors increase expenditures by .06 [0.01, .11], which is consistent with our main results.
21 General expenditures consist of all city expenditures other than utility expenditures, liquor stores expenditure, and employee-retirement or other insurance trust expenditure.
Instead, our results tentatively suggest that Democratic mayors increase police spending, although the results do not quite approach conventional levels of statistical significance. We also find no evidence that Democratic mayors increase spending on education, welfare, healthcare, administrative expenses, sanitation, or utilities. The null results for education and welfare spending are somewhat surprising. However, more than half of the cities in our data do not actually spend anything on either of these policy areas. In addition, most school boards are directly elected rather than appointed by the mayors (Hess, 2002). These factors limit the ability of mayors to exert influence in these policy areas in most cities.

22 We also find no evidence that Democratic mayors increase the share of city spending on police or fire protection.

23 On average, city governments spend less than one half of 1% of their budgets on public welfare and less than 5% of their budgets on education (Hajnal and Trounstine, 2010). Moreover, the median city spends $0 on these two categories.
Table 2: City Fiscal Outcomes: Spending per Capita

<table>
<thead>
<tr>
<th></th>
<th>Obs</th>
<th>BW</th>
<th>RDD Estimate</th>
<th>Robust CI</th>
<th>Pr ></th>
<th>z</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Expenditures</td>
<td>980</td>
<td>9.38</td>
<td>110.74</td>
<td>(10.22, 228.21)</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Expenditures</td>
<td>980</td>
<td>8.87</td>
<td>94.26</td>
<td>(0.45, 207.92)</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roads</td>
<td>980</td>
<td>8.88</td>
<td>23.3</td>
<td>(-3.72, 54.8)</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parks</td>
<td>980</td>
<td>9.08</td>
<td>11.57</td>
<td>(-9.01, 34.01)</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Housing</td>
<td>953</td>
<td>6.26</td>
<td>22.56</td>
<td>(2.43, 50.36)</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Libraries</td>
<td>906</td>
<td>7.4</td>
<td>3.71</td>
<td>(-0.23, 7.96)</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>980</td>
<td>11.2</td>
<td>12.33</td>
<td>(-17.19, 43.92)</td>
<td>0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire</td>
<td>980</td>
<td>7.59</td>
<td>4.24</td>
<td>(-2.23, 12.13)</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Police</td>
<td>980</td>
<td>7.2</td>
<td>8.22</td>
<td>(-3.06, 21.66)</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health</td>
<td>934</td>
<td>6.87</td>
<td>2.7</td>
<td>(-4.86, 10.56)</td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sanitation</td>
<td>980</td>
<td>7.28</td>
<td>-5.19</td>
<td>(-39.77, 30.08)</td>
<td>0.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilities</td>
<td>980</td>
<td>9.78</td>
<td>15.46</td>
<td>(-17.69, 44.11)</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Welfare</td>
<td>980</td>
<td>9.18</td>
<td>-1.1</td>
<td>(-9.5, 5.26)</td>
<td>0.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administration</td>
<td>898</td>
<td>8.36</td>
<td>1.67</td>
<td>(-3.22, 7.56)</td>
<td>0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interest</td>
<td>980</td>
<td>6.09</td>
<td>25</td>
<td>(12.91, 42.45)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Estimated using the default local-linear regression bandwidth (BW) and robust confidence intervals calculated by `rdrobust` (Calonico, Cattaneo, and Titiumik, 2014a).

We next analyze the effect of a Democratic mayor on municipal revenues and taxes per capita. Table 3 shows that Democrats raise taxes by the relatively modest amount of $44 per capita (3.6%). Much of the increase in city tax revenues comes from increasing sales taxes revenues per capita by $10 per capita (5%). We find no evidence that Democratic mayors increase property taxes, perhaps due to the many constraints on city property tax levies (Mullins and Wallin, 2004).

Overall, we find no evidence that Democratic mayors increase total city revenues. This is somewhat surprising given our earlier findings that Democratic mayors spend substantially more than Republican ones. If Democratic mayors do not increase total city revenue, how do they pay for the higher spending levels we highlighted earlier? The answer appears to be that they increase debt. We find that Democratic mayors issue $252 (11%) more in per capita debt than Republican mayors. Moreover, the increase in municipal debt under Democratic mayors persists for at least five years after the election.
Table 3: City Fiscal Outcomes: Revenues Per Capita

<table>
<thead>
<tr>
<th></th>
<th>Obs</th>
<th>BW</th>
<th>RDD Estimate</th>
<th>Robust CI</th>
<th>Pr ></th>
<th>z</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenues</td>
<td>980</td>
<td>7.87</td>
<td>0.84</td>
<td>(-107.7, 121.5)</td>
<td>0.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revenues - Own Sources</td>
<td>980</td>
<td>8.57</td>
<td>25.76</td>
<td>(-62.16, 128.65)</td>
<td>0.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxes</td>
<td>980</td>
<td>6.38</td>
<td>43.96</td>
<td>(0.36, 103.63)</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales Tax</td>
<td>980</td>
<td>8.64</td>
<td>10.4</td>
<td>(0.68, 22.95)</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Property Tax</td>
<td>980</td>
<td>5.54</td>
<td>10.88</td>
<td>(-11.02, 44.76)</td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intergov. Revenue</td>
<td>980</td>
<td>5.3</td>
<td>-32.44</td>
<td>(-118.62, 31.4)</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debt</td>
<td>980</td>
<td>4.98</td>
<td>251.93</td>
<td>(29.78, 499.7)</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Estimated using the default local-linear regression bandwidth (BW) and robust confidence intervals calculated by \texttt{rdrobust} (Calonico, Cattaneo, and Titiunik, 2014a).

6 Robustness

In order to examine the robustness of our results, we ran several additional sets of analysis. These robustness checks help rule out the possibility that our results are artifacts of any particular subset of data.

First, we examined the effect of mayoral partisanship on per capita expenditures using subsets of our data based on particular sources. Table 4 shows the results. The first row shows our main results. In the second row, we show the effect of a Democratic mayor on expenditures in cities with more than 75,000 people that appeared in Ferreira and Gyourko (2009)’s dataset. In the third row, we show the effect of a Democratic mayor on expenditures in observations that appeared in Gerber and Hopkins (2011)’s dataset. The fourth row shows the effect of a Democratic mayor in elections where we obtained data from OurCampaigns.com. The results are substantively similar across all three sets of data. Moreover, all three sets of results are significant at the 10% level.

\footnote{In the electoral RD design, the estimand is the local average treatment effect (LATE) of narrowly electing a Democratic mayor rather than a Republican mayor. Thus, we drop elections that did not have a Democratic and a Republican candidate in the race since the LATE is not defined in those cases. In their original analysis, Gerber and Hopkins (2011) group Independents and Republicans together in their coding of mayoral partisanship. Thus, “candidates running for mayor [in their analysis] could include both people to the right of the Democratic candidate and people to the left” (Gerber and Hopkins, 2011, SI, 6).}

\footnote{Given our robust findings across all three subsets of data, we also explored what factors drove...}
Table 4: Effect of Mayoral Partisanship on Per Capita Expenditures using Data from Different Sources

<table>
<thead>
<tr>
<th></th>
<th>Obs</th>
<th>BW</th>
<th>RDD Estimate</th>
<th>Robust CI</th>
<th>Pr ></th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Dataset</td>
<td>980</td>
<td>9.38</td>
<td>110.74</td>
<td>(10.22, 228.21)</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Ferreira and Gyorko (2009)</td>
<td>559</td>
<td>9.08</td>
<td>167.65</td>
<td>(31.38, 341.43)</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Gerber and Hopkins (2011)</td>
<td>98</td>
<td>6.57</td>
<td>316.01</td>
<td>(-69.19, 738.61)</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>OurCampaigns</td>
<td>498</td>
<td>9.32</td>
<td>118.27</td>
<td>(-13.59, 282.1)</td>
<td>0.08</td>
<td></td>
</tr>
</tbody>
</table>

Estimated using the default local-linear regression bandwidth (BW) and robust confidence intervals calculated by \texttt{rdrobust} (Calonico, Cattaneo, and Titiunik, 2014a).

We also explore whether our results are driven by a few very large cities with unusually large partisan effects (Table 5). Following, Gerber and Hopkins (2011), we define large cities as those with more than 170,000 people. We define medium cities as those with 75,000-170,000 people. While neither effect size crosses conventional statistical significance levels, the effect of a Democratic mayor on per capita expenditures appears to be similar in medium and large cities. Both effect sizes are also similar to our main results. This suggests that our findings are not driven by a few large cities in our data.

Table 5: Effect of Mayoral Partisanship on Per Capita Expenditures in Medium and Large Cities

<table>
<thead>
<tr>
<th></th>
<th>Obs</th>
<th>BW</th>
<th>RDD Estimate</th>
<th>Robust CI</th>
<th>Pr ></th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Dataset</td>
<td>980</td>
<td>9.38</td>
<td>110.74</td>
<td>(10.22, 228.21)</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Medium Cities (75k-170k)</td>
<td>471</td>
<td>6.31</td>
<td>120.77</td>
<td>(-21.53, 291.85)</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>Large Cities (170k+)</td>
<td>509</td>
<td>9.95</td>
<td>136.93</td>
<td>(-33.75, 316.46)</td>
<td>0.11</td>
<td></td>
</tr>
</tbody>
</table>

Estimated using the default local-linear regression bandwidth (BW) and robust confidence intervals calculated by \texttt{rdrobust} (Calonico, Cattaneo, and Titiunik, 2014a).

Next, we examined whether the impact of mayoral partisanship on the size of the null findings in Ferreira and Gyorko (2009). It appears that their null findings are driven by the small cities in their sample. Indeed, when we examine cities in Ferreira and Gyorko (2009)’s data with between 25,000 and 75,000 people, we find a statistically insignificant, but substantively large, negative effect of a Democratic mayor on per capita expenditures. Also, Ferreira and Gyorko (2009) focus on the effect of Democratic mayors on cross-sectional variation in levels of city expenditures rather than within city differences in their regression discontinuity models. Our focus on within-city changes in municipal fiscal policies substantially increases our statistical efficiency (Lee and Lemieux, 2010, 331–3).
municipal government has changed over time. The first row of Table 6 shows our main results using our full dataset. The second row shows the results for the time period between 1951-1971. During this period, Democratic mayors spent about $100 per capita more than Republican mayors. The third row shows that between 1972-1991 Democratic mayors spent about $200 per capita more than Republican mayors. The fourth row shows that between 1992-2012 Democratic mayors spent about $150 per capita more than Republican mayors. Overall, we see little evidence of substantial heterogeneity in the effects of mayors over-time. Indeed, none of the differences across time period are statistically significant. Thus, our main results do not appear to be sensitive to the exact time period that we study.

Table 6: Effect of Mayoral Partisanship on Per Capita Expenditures by Time Period

| | Obs | BW | RDD Estimate | Robust CI | Pr > |z| |
|----------------|-----|----|---------------|----------------------|------|---|
| Full Dataset | 980 | 9.38 | 110.74 | (10.22, 228.21) | 0.03 |
| 1951-1971 | 217 | 5.98 | 95.64 | (-16.5, 207.88) | 0.09 |
| 1972-1991 | 330 | 11.09 | 204.11 | (-2.85, 444.65) | 0.05 |
| 1992-2012 | 433 | 7.61 | 142.57 | (-44.32, 311.29) | 0.14 |

Estimated using the default local-linear regression bandwidth (BW) and robust confidence intervals calculated by \texttt{rdrobust} (Calonico, Cattaneo, and Titiunik, 2014a).

We also examined whether the impact of mayoral partisanship on the size of municipal government varies when we exclude the south from our analysis. Table 7 shows that effect of mayoral partisanship is somewhat larger when we exclude the south than in our main results.\footnote{Note, however, that the difference is not statistically significant.} This could be due to greater ideological polarization between Democratic and Republican mayors in the non-south than in the south.

Finally, we explored the sensitivity of our main results on per capita expenditures to alternative time horizons.\footnote{For this analysis, we subset our data to the period 1950-2006 to ensure that each time horizon uses a similar dataset.} We find that it takes mayors two years to have an effect on municipal expenditures. However, after two years, the effect of a Democratic
Table 7: Effect of Mayoral Partisanship on Per Capita Expenditures in the Non-South

| | Obs | BW | RDD Estimate | Robust CI | Pr > |z| |
|----------------|-----|-----|---------------|-------------------|------|--|
| Full Dataset | 980 | 9.38| 110.74 | (10.22, 228.21) | 0.03 |
| Non-South | 751 | 6.99| 165.85 | (44.18, 324.38) | 0.01 |

Estimated using the default local-linear regression bandwidth (BW) and robust confidence intervals calculated by \texttt{rdrobust} (Calonico, Cattaneo, and Titiunik, 2014a).

mayor stays relatively constant until at least 6 years after the initial election.28 Thus, our main results do not appear to be sensitive to the time horizon that we select for mayors to have an impact on fiscal policies.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3.png}
\caption{The effect of mayoral partisanship on per capita municipal expenditures 1-6 years after an election}
\end{figure}

7 Differences Across Municipal Institutions

In this section, we examine whether the impact of mayoral partisanship varies in cities with different institutions. We test whether the impact of mayors on policies differs in officially partisan vs. nonpartisan cities, and whether those cities with a strong mayor system differ from those with a council-manager form of government. However, it is important to note that these comparisons could be conflating the causal effect of

28The constant effect size after two years is consistent with the results in Caughey, Warshaw, and Xu (2015) about the long-term impact of governors on policy.
institutions with other cross-sectional differences between cities. Indeed, our research design identifies the local average treatment effect (LATE) of a Democratic mayor on city fiscal outcomes. It does not enable us to causally identify differences in the impact of mayoral partisanship across institutions.

The differential impact of partisan mayors in cities with partisan and nonpartisan ballots is shown in Table 8. We find an effect of Democratic mayors on expenditures in nonpartisan cities, but no statistically significant effect in officially partisan cities. While the estimated effect is larger in nonpartisan cities, the difference between the effect of mayors in partisan and non-partisan elections is not statistically significant.\(^{29}\)

Table 8: Differences between Effect of Mayor in Cities on Per Capita Expenditures with Partisan and Non-Partisan Elections

| | Obs | BW | RDD Estimate | Robust CI | Pr > |z| |
|----------------------|-----|-----|---------------|---------------------|-------|---|
| Partisan Elections | 501 | 6.39| 77.23 | (-50.64, 225.58) | 0.21 |
| Non-Partisan Elections | 439 | 9.75| 203.31 | (1.31, 403.99) | 0.05 |

Estimated using the default local-linear regression bandwidth (BW) and robust confidence intervals calculated by rdrobust (Calonico, Cattaneo, and Titiumik, 2014a).

We next look at the different ability of mayors to affect policy in cities with strong mayor systems relative to cities with mayor-council systems where the city manager is the chief executive of the municipal government. These results are shown in Table 9. In neither subgroup do we find effects of partisan control of the mayorship that reach conventional levels of statistical significance, though under both forms of government we see similar point estimates of the effect. This demonstrates that our estimate of the effect of Democratic mayors is not driven by one form of government.

Overall, our results indicate that institutions do not seem to affect the degree to which mayors change policy. While contrary to our theoretical hypotheses, the lack of variation across institutions is in line with findings from other studies showing no difference in responsiveness (Tausanovitch and Warshaw, 2014) or economic voting.

\(^{29}\)Our findings here are similar to Gerber and Hopkins (2011), who also report no statistically significant difference between the impact of mayors in cities with partisan and nonpartisan elections.
(Hopkins and Pettingill, 2015) across cities with different types of institutions.

Table 9: Differences between Effect of Mayor on Per Capita Expenditures in Cities with and without City Managers

| System | Obs | BW | RDD Estimate | Robust CI | Pr > |z| |
|-------------------------------|-----|-----|---------------|------------------------|-------|---|
| Council-Manager System | 341 | 5.63| 106.01 | (-27.46, 292.7) | 0.1 |
| Strong Mayor System | 571 | 8.09| 88.28 | (-83, 260.12) | 0.31 |

Estimated using the default local-linear regression bandwidth (BW) and robust confidence intervals calculated by \texttt{rdrobust} (Calonico, Cattaneo, and Titiunik, 2014a).

8 Conclusion

Municipal governments play a crucial role in American democracy (Trounstine, 2010). They employ millions of workers and spend well over a trillion dollars each year (U.S. Census Bureau, 2007). Therefore, it is very important to understand the effect of mayoral elections on the size of municipal government. The consensus in the existing literature is that the party of the mayor has virtually no effect on city fiscal outcomes (Ferreira and Gyourko, 2009; Gerber and Hopkins, 2011). In this study, we examine the relationship between the mayor’s party and city fiscal outcomes in cities with more than 75,000 people using a much larger dataset than previous studies.

We show that electing a Democratic mayor over a Republican mayor leads to an increase in overall expenditures, as well as additional spending in a variety of specific policy areas. However, we find that Democratic mayors only modestly increase taxes. Instead, the bulk of the expansion in the size of government under Democratic mayors appears to be paid for through increasing debt. Indeed, Democratic mayors issue substantially more debt than Republican mayors, and cities with Democratic mayors pay much more interest to service this debt.

We also examine whether the impact of mayoral partisanship varies in cities with different institutions. We find no significant differences in the effect of mayoral parti-
sanship in cities with partisan and non-partisan elections, or cities with strong-mayor and council-manager systems. This demonstrates that the effect of Democratic mayors is not driven by one form of government. It also indicates that reform institutions designed to insulate local politics from the control of parties do not seem to change the effect of the mayor's partisan affiliation on policy.

Overall, we conclude that despite the multitude of constraints on city governments, elections have an important impact on municipal policy. Moreover, partisan selection plays a role in local politics in much the same way that it does in the United States as a whole. In contrast to the argument that Democratic and Republican mayors do not have a partisan way of implementing city policy, we show that Democratic mayors substantially expand the size of government relative to Republican ones. Our findings also provide a mechanism for the link between public opinion and municipal policies (Tausanovitch and Warshaw, 2014). It seems likely that one of the mechanisms for responsiveness in municipal government is that more liberal cities tend to elect more Democratic mayors, who then expand the size of government. This extends theories of policy responsiveness at other levels of government, and shows that elections at the local level are an important way that democracy in the United States reflects the will of its people.

Future research should examine whether the partisanship of mayors affects non-fiscal policies, such as gay rights policies. Future work should also examine whether the partisan composition of city councils affects municipal policies. Finally, future research should continue to explore the interaction between the impact of mayors and the institutional constraints on municipal governments.
References

Calonico, Sebastian, Matias D. Cattaneo, and Rocío Titiunik. 2014a. *rdrobust: Robust Data-Driven Statistical Inference in Regression-Discontinuity Designs*.

A Mayoral Elections Database

In order to build our database of mayoral elections, we merged data on mayoral elections from four different sources:

- Data on elections from 1950-2005 used in Ferreira and Gyourko (2009)
- Data on elections between 1989-2010 used in Gerber and Hopkins (2011)
- Data that we collected by scraping the website OurCampaigns.com, which includes elections between 1950 and 2014
- Campaign finance-based measures of candidate party ID based on Adam Bonica’s CF-Scores between 1980-2012 (Bonica, 2014)

Ferreira and Gyourko (2009) gathered data by conducting a survey and using information reported by city officials. They contacted all cities in the U.S. with a population above 25,000 in the year 2000. Ferreira and Gyourko (2009) ask city officials to report information on their city’s mayoral elections from 1950 to 2005, including the timing, vote totals, type of election, and names of the candidates. They also ask city officials to report the partisanship of mayoral candidates, identified based on historical voter registration records. They supplement this with partisan information gathered via newspaper archives on the News Bank website.

Gerber and Hopkins (2011) collected their data from election commissions, archived newspapers, official city websites, the ICMA, NCSL, and the Census of Governments. They focus on cities above 170,000 people (the 130 largest cities as of the year 2007). This allows them to gather a publicly available (to voters) informational cue about the partisanship of candidates, but in certain ways it also restricts the possible coding of partisanship. For example, if a candidate runs on an officially nonpartisan ballot and is not (at the time) mentioned in a local newspaper associated with a certain party, then Gerber and Hopkins would have no choice but to code her as nonpartisan. This candidate may be entirely partisan, but her partisanship simply wasn’t important to the newspaper given the official nonpartisan status of the election.
OurCampaigns.com (OC) is a crowd-sourced political information website that allows users to contribute information on candidates and campaigns at all levels of government. Data from OC was previously used by Vogl (2014). Mayoral elections listed on this site have the date of the election, candidate names and partisanship, vote totals, and often even more detailed information on the candidates. These user-contributed sources ranged from archived newspaper articles to official city election returns. The OC data that we collect is limited only by whether a city has a dedicated page on the site and which years have been reported by users. For some cities, this can date back before 1950; for others it is only a handful of election years.

The campaign finance-based measure of partisanship that we use is the “CFscores” developed by Adam Bonica (Bonica, 2014). The intuition behind them is relatively simple: by creating a large matrix of the matchup between contributors and candidates for federal and state elections whom they contribute to, CFscores are able to estimate ideology. The assumptions behind this method of estimation is that contributors donate — on average — to more ideologically proximate candidates than more distant ones. A recent working paper indicates that CFscores may display substantial amounts of measurement error in their ideological placements of individuals, but they yield extremely accurate estimates of individuals’ party identification (Hill and Huber, 2015).

We match the candidate names in our comprehensive elections data to the names in the contributor database of 15 million contributors in the 1980-2012 election cycles (Bonica, 2013). We then split the resulting candidate pool into three divisions:

30 We take the matching CFscore from the contributor matching the full name and city of residence of our candidate and who made a contribution within six years of the first or last time they appear in our elections data. For candidates who matched more than one contributor within the strict time and location frames that we used to search for matches, we implemented a manual matching method. For candidates who matched multiple distinct contributors across multiple election cycles but who each had the same CFscore, we simply assigned them that unique CFscore. For those who matched contributors with more than one unique CFscore, we determined the correct match by referring to the occupation listed in the CFscore database. If the occupation was listed as “mayor” or that city’s government, we used that contributor’s CFscore. If there were no contributors who listed city government as their occupation, we searched for biographical information on the
those with CFscores more than 0.33 standard deviations above the median, those more than 0.33 standard deviations below the median, and those close to the median. The group with the high CFscores is labeled Republican by this measurement, while the group with the low CFscores is labeled as a Democrat. Candidate in the median group are not used in this analysis as they are not determined as partisan by this method as they have relatively moderate donating patterns.

In order to correct errors or discrepancies in these sources, we checked for conflicts between the four sources, and identified those elections where any of the four disagree on either vote shares or partisan information. We then conducted a search of online sources much as Gerber and Hopkins (2011) did to identify the vote counts and possible partisanship of candidates. We do not, however, limit our search to the newspaper or election report for that particular election: we broaden the search for partisan information to future and past political campaigns for each candidate, as well as official biographical information or published newspaper articles. We therefore have partisan information for officially partisan races or other races where party appeared on the ballot, as well as officially nonpartisan races when the candidate previously or later ran for political office under a party. If biographies or historical newspapers listed candidates as partisan, we use that partisanship in our data as well. To give an example, in the 1983 election in Birmingham, Alabama, Richard Arrington Jr. was officially a nonpartisan candidate, but according to a 1984 article in The Tuscaloosa News Arrington was a member of the executive committee in the state’s Democratic Party. His opponent, John Katopodis, ran for Jefferson County Commission as a Republican in 1986. Both candidates can therefore be coded as partisan despite this information being unavailable from the Birmingham mayoral ballot in 1983. We then candidates in the election to determine their occupation at the time they ran. From archival newspapers and other sources we were able to determine the occupation of the candidate at the time of the election, and so matched the contributor with the correct occupation. If we were unable to find the occupation of the mayoral candidate, we did not determine a correct match and therefore did not assign a CFscore. Similarly, for those contributor matches that had no occupation listed and therefore no way to distinguish the correct match, we did not assign a CFscore.
use these data to examine whether (and which) fiscal policies are changed by mayors in American cities.

B Descriptive Statistics on our Sample of Cities

Descriptive statistics for the cities that we use in our final sample of elections are presented in Table 10. In the first column, we report summary statistics (mean and standard deviation) for several characteristics. Since we choose to focus on cities over a population threshold of 75,000 people, our sample of cities is biased in its average size relative to all cities in the U.S., shown in the second column. Relative to the entire country, our sample is also somewhat regionally weighted towards the west and northeast. It is less white and more black than cities across the entire country, as well as slightly more educated and wealthier, and with a higher median home value.

However, since our target population of cities was those over 75,000 in population, a more appropriate comparison is the subset of cities in the U.S. over that threshold. Our final sample consists of 203 of these 380 cities. Summary statistics for these cities are shown in the last column of Table 10. Relative to our target population, our sample has a slightly higher average population and is somewhat more regionally weighted towards the northeast and away from the west. Racially, our cities have a slightly higher black population, while educational attainment of the cities in our sample are quite similar to the target group of cities. Our sample has cities with slightly lower median household income and median home value.
Table 10: City Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>Final Sample</th>
<th>All U.S. cities</th>
<th>>75k population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Population</td>
<td>322,728</td>
<td>8,226</td>
<td>231,987</td>
</tr>
<tr>
<td></td>
<td>(671,322)</td>
<td>(68,368)</td>
<td>(505,955)</td>
</tr>
<tr>
<td>% West</td>
<td>0.28</td>
<td>0.17</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>(0.45)</td>
<td>(0.37)</td>
<td>(0.48)</td>
</tr>
<tr>
<td>% South</td>
<td>0.32</td>
<td>0.33</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>(0.47)</td>
<td>(0.47)</td>
<td>(0.46)</td>
</tr>
<tr>
<td>% Northeast</td>
<td>0.40</td>
<td>0.14</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>(0.49)</td>
<td>(0.35)</td>
<td>(0.46)</td>
</tr>
<tr>
<td>% White</td>
<td>0.65</td>
<td>0.85</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>(0.18)</td>
<td>(0.21)</td>
<td>(0.18)</td>
</tr>
<tr>
<td>% Black</td>
<td>0.19</td>
<td>0.07</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>(0.18)</td>
<td>(0.16)</td>
<td>(0.17)</td>
</tr>
<tr>
<td>% College degree</td>
<td>0.16</td>
<td>0.12</td>
<td>0.17</td>
</tr>
<tr>
<td>or more</td>
<td>(0.07)</td>
<td>(0.10)</td>
<td>(0.08)</td>
</tr>
<tr>
<td>Median household</td>
<td>$39,561</td>
<td>$38,520</td>
<td>$42,215</td>
</tr>
<tr>
<td>income</td>
<td>(10,865)</td>
<td>(18,805)</td>
<td>(12,517)</td>
</tr>
<tr>
<td>Median home</td>
<td>$120,467</td>
<td>$95,025</td>
<td>$139,116</td>
</tr>
<tr>
<td>value</td>
<td>(60,144)</td>
<td>(92,257)</td>
<td>(77,381)</td>
</tr>
<tr>
<td>Number of cities</td>
<td>203</td>
<td>25,375</td>
<td>380</td>
</tr>
</tbody>
</table>

Statistics are from 2000 U.S Census data. Standard deviations in parentheses.