Discovery of two gravitationally lensed quasars in the Dark Energy Survey

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Discovery of two gravitationally lensed quasars in the Dark Energy Survey

This paper includes data gathered with the 6.5m Baade Telescopes located at Las Campanas Observatory, Chile. Affiliations at the end of the paper.

* Packard Fellow.

*aagnello@astro.ucla.edu, tt@astro.ucla.edu

Accepted. Received

ABSTRACT

We present spectroscopic confirmation of two new lensed quasars via data obtained at the 6.5m Magellan/Baade Telescope. The lens candidates have been selected from the Dark Energy Survey (DES) and WISE based on their multi-band photometry and extended morphology in DES images. Images of DES J0115−5244 show two blue point sources at either side of a red galaxy. Our long-slit data confirm that both point sources are images of the same quasar at $z_s = 1.64$. The Einstein Radius estimated from the DES images is $0.51''$. DES J2146−0047 is in the area of overlap between DES and the Sloan Digital Sky Survey (SDSS). Two blue components are visible in the DES and SDSS images. The SDSS fiber spectrum shows a quasar component at $z_s = 2.38$ and absorption compatible with Mg II and Fe II at $z_l = 0.799$, which we tentatively associate with the foreground lens galaxy. The long-slit Magellan spectra show that the blue components are resolved images of the same quasar. The Einstein Radius is $0.68''$ corresponding to an enclosed mass of $1.6 \times 10^{11} M_{\odot}$. Three other candidates were observed and rejected, two being low-redshift pairs of starburst galaxies, and one being a quasar behind a blue star. These first confirmation results provide an important empirical validation of the data-mining and model-based selection that is being applied to the entire DES dataset.

Key words: gravitational lensing: strong – quasars: emission lines – methods: observational – methods: statistical
1 INTRODUCTION

Gravitationally lensed quasars provide unique insights into a variety of fundamental open problems in cosmology and extragalactic astrophysics (e.g. Courbin, Saha & Schechter 2002). When a quasar is strongly lensed by a galaxy, it results in multiple images of the same source, accompanied by arcs or rings that map the lensed host of the quasar. The light-curves of different images are offset by a measurable time-delay (e.g. Schechter et al. 1997; Fewes et al. 2013) that depends on the cosmological distances to the lens and the source and the gravitational potential of the lens (Refsdal 1964). This enables one-step measurements of the expansion history of the Universe and the dark matter halos of the massive galaxies that act as deflectors (e.g., Suyu et al. 2014). The microlensing effect on the multiple quasar images, induced by stars in the deflector, provides a quantitative handle on the stellar content of the lens galaxies (e.g., Schechter & Wambsganss 2002; Oguri, Rusu & Falco 2014; Schechter et al. 2014; Jiménez-Vicente et al. 2015), and can simultaneously provide constraints on the inner structure of the lensed quasar, both the accretion disk size and the thermal profile (e.g. Poindexter, Morgan & Kochanek 2008; Anguita et al. 2008; Eigenbrod et al. 2008; Motta et al. 2012) as well as the geometry of the broad line region (e.g. Sluse et al. 2011, Guerras et al. 2013, Braibant et al. 2014). Furthermore, milli-lensing via the so-called flux ratio anomalies provides a unique probe of the mass function of substructure and thus ultimately of the nature of dark matter (Mao & Schneider 1999; Metcalfe & Madjic 2001; Metcalfe 2002; Dalal & Kochanek 2002; Nierenberg et al. 2014). Finally, source reconstruction of the lensed quasar and its host give a direct view of quasar-host coevolution up to $z \approx 2$ (Peng et al. 2006; Rusu et al. 2015).

Advancement in the field is currently limited by the paucity of known systems suitable for detailed follow-up and analysis. A large sample of new systems will be transformative. To accomplish this, the STRIDES project
c

a

b

c

d

a broad external collaboration of the Dark Energy Survey (DES, http://www.darkenergysurvey.org/index.shtml), aims at the discovery of the ~ 100 lensed quasars with primary image brighter than $i = 21$ mag predicted by Oguri & Marshall (2010) to lie within the DES footprint.

The identification of such rare systems over 5000 square degrees of DES imaging data is a classic needle-in-a-haystack problem. The challenge is possibly greater than that faced in the SDSS dataset (Oguri et al. 2006; Inada et al. 2008), as DES catalogs do not contain u-band data and there is no built-in spectroscopic dataset to aid in the quasar selection. Fortunately, the DES image quality (median seeing $\lesssim 0.9''$) is better than that of SDSS, so one can rely on more accurate morphological information for candidate selection. New techniques have been developed in order to address this challenge (Agnello et al. 2015; Chan et al. 2015).

Here we report on the first spectroscopic confirmation of lensed quasars from DES. We have obtained spectra of five of the 68 high-grade, small-separation candidate lensed quasars in the year-1 DES data release footprint (hereafter Y1A1, Diehl et al. 2014), covering ~ 1200 deg2 in the Southern Hemisphere.

This Letter is organized as follows. Section 2 briefly illustrates the candidate-selection process and DES images of the two successful candidates from the first spectroscopic follow-up. Section 3 shows the long-slit spectroscopic data obtained for these systems. In Section 4 we present the lensing properties that can be inferred with current data and conclude in Section 5. Throughout this paper, DES and WISE magnitudes are in the AB and Vega system respectively. When needed in Sect. 2 we adopt a concordance cosmology with $\Omega_m = 0.3$, $\Omega_{\Lambda} = 0.7$, $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$.

2 QUASAR LEN S CANDIDATE SELECTION

We selected small-separation candidates from the DES Y1A1 data release, using a combination of colour cuts and data mining and model-based selection. Following Agnello et al. (2015) we adopt a multistep strategy, whereby targets are first selected from catalog data, and candidates are then selected from the targets by analysis of the actual multi-band images. This multistep procedure allows one to keep the problem computationally fast.

2.1 Preselection

Objects are preselected in the DES catalogue based on their ‘blue’ colours and extended morphology. The colour selection, satisfying

$$g-r < 0.6, \quad r-i < 0.45, \quad i-z < 0.55,$$

$$2.5 < i-W1 < 5.5, \quad 0.7 < W1-W2 < 2.0, \quad g-i < 1.2(i-W1) - 2.8,$$

is only used to exclude the majority of galaxies and nearby blue stars from the pool being examined. Of these, we retain those satisfying

$$psf_mag - model_mag \geq dmag$$

in DES g,r,i bands simultaneously, with $dmag = 0.125$ in g,r bands and 0.2 in i band. This ensures that the objects are not point-like (cf Reed et al. 2015, who use a similar but converse criterion for point-like objects).

Out of $\sim 2 \times 10^5$ ‘blue’ systems, extended in $i-$band and with acceptable colours in DES g,r,i,z and WISE $W1,W2$ magnitudes, ~ 4000 are brighter than limiting magnitudes $i = 21$ or $W1 = 17$ and extended also in g,r bands.

2.2 Targets

Of the 4000 blue extended objects, targets are selected by neural network classifiers (ANNs) based on their photometry and multi-band morphology obtained at catalogue-level. In particular, DES model g,r,i,z magnitudes and WISE $w1mpro$ ($W1$), $w2mpro$ ($W2$) magnitudes are used for the photometry and DES model position angles and axis ratios in g,r,i,z are used for the morphology. ANNs produce membership probabilities for each object to belong to different classes, from which the targets are selected with cuts in output probabilities. The full procedure is discussed in detail.

1 STRong lensing Insight in the Dark Energy Survey, PI Treu, full list of Co-PIs and Co-Is at http://strides.physics.ucsb.edu
quantitative criteria listed above. The final sample has 23
discretion, even though the ranking is based on the four
procedures (preselection, ANNs, modelling) to the investigator

Y

A possible lens galaxy is detected in the residuals or in
g, r, i, z, Y,

(i) the point sources have consistent SEDs at least in
r, i, z

Based on the model results, we ranked candidates from '0'
to '3' (good lens candidate), based on whether:

(iii) the fainter quasar image is also redder in g − r; (iv)
a possible lens galaxy is detected in the residuals or in Y

by Agnello et al. (2015). ANNs relying just on the photom-
etry select 430 targets, out of which 136 are also selected by
ANNs relying on multi-band morphologies as well.

2.3 Candidates

The DES g, r, i, z, Y image cutouts of selected targets have been modelled as combinations of point sources and galax-
ies to extract the SEDs of the extended and point sources.
Based on the model results, we ranked candidates from '0'
(not a lens) to '3' (good lens candidate), based on whether:
(i) the point sources have consistent SEDs at least in r, i, z
bands; (ii) their SEDs are compatible with those of quasars;
(iii) A possible lens galaxy is also redder in g − r; (iv)
a possible lens galaxy is detected in the residuals or in Y

2.4 First two confirmed lenses

Figure 1 shows DES multi-band, single-epoch images in the
best seeing conditions of the two successful candi-
dates for which we describe spectroscopic follow-up in the
next Section. They are DES J0115−5244 at 01:15:57.32
−52:44:23.20 (top) and DES J2146−0047 at 21:46:46.04
−00:47:44.3 (bottom).

The photometry and relative astrometry of the compo-
nents in our composite models are summarized in Table 1.
We have used the single-epoch DES cutouts with best image
quality and adopted DES models of the PSF from nearby
stars. For DES J2146−0047, we also fit Moffat profiles with
the same structural parameters to each quasar image and a
Sérsic profile to the lensing galaxy in archival CFHT Mega-
Cam i, z-band images (Programme 10BC22, PI: van Waer-
beke). The resulting photometry is given in Table 1 below
the DES one. Even though the galaxy is below the detect-
ation limit in DES single-epoch data except in Y-band, it is
securely detected in CFHT data in i, z bands as well.

Three additional candidates have been observed during
the same observing run and ruled out as lensed quasars.
They are briefly described in Sect. 3.3 below.
3 SPECTROSCOPIC CONFIRMATION

Spectra were obtained with the Inamori Magellan Areal Camera and Spectrograph (IMACS, Dressler et al. 2011) on the Baade 6.5 m telescope on UT 2015 June 19. The f/4 camera was used with 0.70′′ slit mask. The data were binned factors of 2 along the slit, giving a scale of 0.22′′/pixel, and 4 in the spectral direction, which combined with a 300 1/mm grating gave a dispersion of 2.92Å /pixel. Two CCDs covered the spectra over 3770 – 5260 Å and 5350 – 6880 Å. The seeing ranged between 0.8′′ and 1.2′′, and all our candidates were partially or completely resolved. Two spectra of 600s were taken for each object. The data were reduced using standard IRAF routines. One-dimensional (1D) spectra have been extracted by modelling the 2D spectra as superpositions of Gaussian tracks in the spatial dimension, one per component, having peak positions (p1, p2) that are linear functions of the wavelength with the same slope (dp/dλ). Even though the individual tracks are generally well separated, this procedure ensures that the resulting 1D spectra are as independent as possible from one another and exploit all the information available in the 2D tracks.

Five grade-‘3’ candidates were visible and observed. The resulting spectra are described below. The results on the two confirmed lenses are shown in Fig. 2.

3.1 DES J0115−5244

The 1D spectra of DES J0115−5244 show the same broad emission lines (C IV, He II, C III] at z = 1.64, with a uniform ratio between the two spectra in the red, as shown in Figure 2 indicating that the low-order differences between the two spectra are due to differential reddening, or perhaps chromatic microlensing. Together with the presence of a red galaxy in the DES images, the spectra confirm DES J0115−5244 as a strongly lensed quasar, with image separation ≈ 1.04″. Unfortunately, the S/N-ratio is too low to securely detect stellar absorption lines from the deflector.

3.2 DES J2146−0047

The 1D spectra of DES J2146−0047 show two components with the same broad emission lines at z = 2.38, consistent with the public SDSS fiber spectrum. Prominent Mg II and Fe II absorption lines at z = 0.799 are detected in both spectra (fig. 2). The ratio between the two spectra is constant, which together with the detection of a galaxy in zy′ bands confirms DES J2146−0047 as a strongly lensed quasar, with image separation ≈ 1.32″. We associate the lens redshift with the galaxy responsible for the absorption lines at z1. This system has been independently identified as part of the SDSS-III quasar lens sample (More et al., in prep).

3.3 False Positives

Two candidates, at 20:53:56.5 −56:09:36 and 22:17:52.5 −53:57:15 respectively, are pairs of compact, star forming galaxies. The third rejected candidate, at 22:00:24.11 +01:10:37.56, is an alignment of a z = 1.37 red quasar and a blue star, with the same r − i and i − z colours by coincidence.

In general, pairs of compact star forming galaxies at z ≈0.2–0.3 are the main residual contaminant from the candidate selection procedure, because their broad-band colours are consistent with those of quasars. This includes initial candidates that we rejected based on their available SDSS spectra. In WISE magnitudes, they tend to lie at W2 > 14 and W1 − W2 < 0.8, across the limiting locus of Assef et al. (2013), a region that however is occupied also by spectroscopically-confirmed quasars and some of the candidates from this search.

4 LENSCING PROPERTIES

Even though the current data are not sufficient for a detailed lensing model, they can be used to derive simple properties of the lens galaxies. To this aim, we adopt a Singular Isothermal Sphere (SIS) model for the mass density profile of the deflector, which is commonly considered the simplest model apt to describe galaxy-scale lenses (Treu 2010). The SIS projected surface density is

\[\Sigma(R) = \frac{1}{2} \Sigma_{cr} (R/R_s)^{-1} \]

with \(\Sigma_{cr} = \frac{c^2 D_s}{4\pi G D_l D_a} \) in terms of angular-diameter distances to the source (D_s), to the lens (D_l) and between...
Two additional candidates were ruled out by spectroscopic observations as pairs of low signal-to-noise ratio, and the effects of dust and microlensing are minimized. The results are summarized in Table 2. For DES J0115—5244, we have spectroscopically confirmed two new systems, (i.e. $z_l = 0.635$).

The Einstein radius is approximated by half the image separation (an exact result for SIS profiles). For the flux ratio f_B/f_A as

$$\mu_{tot} = \frac{2 + f_B/f_A}{1 - f_B/f_A},$$

where A is the brighter quasar image. Then, from Table 1 and confirmation spectra, we can estimate R_E, M_E, σ_{sis} and μ_{tot}. The Einstein radius is approximated by half the image separation (an exact result for SIS profiles). For the flux ratio, we use the average between i and z band, for which the photometric fit is more robust against PSF mismatch and signal-to-noise ratio, and the effects of dust and microlensing are minimized. The results are summarized in Table 2. For DES J0115—5244, we adopted a lens redshift $z_l = 0.635$, which minimizes the critical surface density Σ_{cr} and yields a lower bound on σ_{sis}. We also list the magnification inferred from the ratio of continua in the spectra around 6000 Å. With the positional uncertainties from Table 1, the relative uncertainty on R_E is 1%. With current data, the uncertainties on the magnifications are of the same order as their average value.

5 CONCLUSIONS

We have presented the very first results of a campaign to extend the known samples of lensed quasars by exploiting the large footprint of wide-field photometric surveys. In particular, we have spectroscopically confirmed two new systems, found in the DES Y1A1 release with data mining techniques.

Two additional candidates were ruled out by spectroscopic observations as pairs of $z \approx 0.2$ compact, narrow-line galaxies. Another candidate was ruled out as an alignment of a quasar and a blue star. The basic characteristics of the two confirmed systems are as follows.

DES J0115—5244 Consists of two images of a quasar at $z_s = 1.64$ lensed by a foreground galaxy visible in the DES images. No redshift is available for the lens galaxy. The Einstein Radius is estimated to be 0.51$''$.

DES J2146—0047 Consists of two images of a quasar at $z_s = 2.38$, with prominent Mg II absorption at $z_l = 0.799$, which we tentatively associate with the lens galaxy redshift. The redshift of the lensing galaxy is not confirmed in the spectroscopic follow-up by More et al. (in prep), since detection of the Mg II and Fe II lines depends on S/N ratio and in fact is less evident in the worse of our two exposures, where track deconvolution becomes more noisy. Thus, deeper spectroscopic data will be needed to measure the redshift of the deflector, possibly based on stellar absorption lines. The Einstein Radius is estimated to be 0.68$''$.

The main class of contaminants (including candidates rejected based on their SDSS spectra) consists of groups of compact, star-forming galaxies at $z \sim 0.2 - 0.3$, because of their broad-band colours and compact morphology. With the observed sample, a strict cut inWISE $W1- W2$ vs W2 would give a 100% success rate, which drops at 40% when the cut is relaxed. Still, with just five systems currently at hand, we would rather caution against these simple estimates.

Our search has delivered over 100 additional candidates from the Y1A1 data—and we expect many more from the next seasons of DES data. The results of this first follow-up effort are encouraging. However, a systematic follow-up campaign is needed to confirm large numbers of candidates, assess the purity of our selection technique, and carry out the many scientific investigations enabled by lensed quasars.

ACKNOWLEDGMENTS

AA, TT, CDF and CER acknowledge support from NSF grants AST-1312329 and AST-1450141 “Collaborative Research: Accurate cosmology with strong gravitational lens time delays”. AA, and TT gratefully acknowledge support by the Packard Foundation through a Packard Research Fellowship to TT. S.H.S. acknowledges support from the Ministry of Science and Technology in Taiwan via grant MOST-103-2112-M-001-003-MY3. FC and GM are supported by the Swiss National Science Foundation (SNF). The work of PJM was supported by the U.S. Department of Energy under contract number DE-AC02-76SF00515. We thank Tamara Davis, Cristina Furlanetto, Gary Bernstein and Tom Collett for useful comments on earlier versions of this Letter.

This paper has gone through internal review by the DES collaboration. Funding for the DES Projects has been provided by the DOE and NSF(USA), MISE(Spain), STFC(UK), HEFCE(UK), NCSA(UIU), KICP(U. Chicago), CCAPP(Ohio State), MIFPA(Texas A&M), CNPQ, FAPERJ, FINEP (Brazil), MINECO(Spain), DFG(Germany) and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne Lab, UC Santa Cruz, University of Cambridge, CIEMAT-Madrid, University of Chicago, University College London, DES-Brazil Consortium, University of Edinburgh, ETH Zürich, Fermilab, University of Illinois, ICE (IEEC-CSIC), IFAE Barcelona, Lawrence Berkeley Lab, LMU München and the associated Excellence Cluster Universe, University of Michigan, NOAO, University of Notting-
ham, Ohio State University, University of Pennsylvania, University of Portsmouth, SLAC National Lab, Stanford University, University of Sussex, and Texas A&M University. The DES Data Management System is supported by the NSF under Grant Number AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the ERC under the EU’s 7th Framework Programme including grants ERC 240672, 291329 and 306478.

REFERENCES
Dressler A. et al., 2011, PASP, 123, 288
Flaugher B. et al., 2015, ArXiv e-prints
Inada N. et al., 2008, AJ, 135, 496
Reed S. L. et al., 2015, ArXiv e-prints
Rusu C. E. et al., 2015, ArXiv e-prints
Tewes M. et al., 2013, AA, 556, A22

AFFILIATIONS
1Department of Physics and Astronomy, PAB, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547, USA
2Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK
3Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
4CAPES Foundation, Ministry of Education of Brazil, Brasilia - DF 70040-020, Brazil
5MIT Kavli Institute for Astrophysics and Space Research, 37-664G, 77 Massachusetts Avenue, Cambridge, MA 02139
6Fermi National Accelerator Laboratory, Batavia, IL 60510
7Laboratoire d’Astrophysique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, CH-1290 Versoix, Switzerland
8Department of Physics, University of California Davis, 1 Shields Avenue, Davis, CA 95616, USA
9Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94035, USA
10Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
11Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan
12Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena, Chile
13Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
14CNRS, UMR 7095, Institut d’Astrophysique de Paris, F-75014, Paris, France
15Sorbonne Universités, UPMC Univ Paris 06, UMR 7095, Institut d’Astrophysique de Paris, F-75014, Paris, France
16Kavli Institute for Particle Astrophysics & Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94035, USA
17Laboratorio Interinstitucional de e-Astronomia - Linea, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil
18Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil
19Department of Astronomy, University of Illinois, 1002 W. Green Street, Urbana, IL 61801, USA
20National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
21Institut de Ciències de l’Espai, IEEC-CSIC, Campus UAB, Carrer de Can Magrans, s/n, 08193 Bellaterra, Barcelona, Spain
22Institut de Física d’Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
23Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth, PO1 3FX, UK
24Excellence Cluster Universe, Boltzmannstr. 2, 85748 Garching, Germany
25Faculty of Physics, Ludwig-Maximilians University, Scheinerstr. 1, 81679 Munich, Germany
26Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, 85748 Garching, Germany
27Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
28Jet Propulsion Laboratory, California Institute of Technology,