Measurement of the $B^0\to D^*$ Branching Fraction

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevD.94.091101</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Fri Dec 07 02:38:53 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/110231</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Measurement of the $B^0 \to D^{*-} \pi^+ \pi^- \pi^+$ branching fraction

(BABAR Collaboration)
INFN Sezione di Genova, I-16146 Genova, Italy
Indian Institute of Technology Guwahati, Guwahati, Assam 781 039, India
University of Iowa, Iowa City, Iowa 52242, USA
Iowa State University, Ames, Iowa 50011, USA
Physics Department, Jazan University, Jazan 22822, Kingdom of Saudi Arabia
Johns Hopkins University, Baltimore, Maryland 21218, USA
Laboratoire de l’Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d’Orsay, F-91898 Orsay Cedex, France
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
University of Liverpool, Liverpool L69 7ZE, United Kingdom
Queen Mary, University of London, London, E1 4NS, United Kingdom
University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
University of Louisville, Louisville, Kentucky 40292, USA
Johannes Gutenberg-Universität Mainz, Institut für Kernphysik, D-55099 Mainz, Germany
University of Manchester, Manchester M13 9PL, United Kingdom
University of Maryland, College Park, Maryland 20742, USA
Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
McGill University, Montréal, Québec, Canada H3A 2T8
INFN Sezione di Milano, I-20133 Milano, Italy
Dipartimento di Fisica, Università di Milano, I-20133 Milano, Italy
University of Mississippi, University, Mississippi 38677, USA
Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
INFN Sezione di Napoli and Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Napoli, Italy
NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
University of Notre Dame, Notre Dame, Indiana 46556, USA
Ohio State University, Columbus, Ohio 43210, USA
INFN Sezione di Padova, I-35131 Padova, Italy
Dipartimento di Fisica, Università di Padova, I-35131 Padova, Italy
Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France
INFN Sezione di Perugia, I-06123 Perugia, Italy
Dipartimento di Fisica, Università di Perugia, I-06123 Perugia, Italy
INFN Sezione di Pisa, I-56127 Pisa, Italy
Dipartimento di Fisica, Università di Pisa, I-56127 Pisa, Italy
Scuola Normale Superiore di Pisa, I-56127 Pisa, Italy
Princeton University, Princeton, New Jersey 08544, USA
INFN Sezione di Roma, I-00185 Roma, Italy
Dipartimento di Fisica, Università di Roma La Sapienza, I-00185 Roma, Italy
Universität Rostock, D-18051 Rostock, Germany
Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, United Kingdom
CEA, Ifeu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France
SLAC National Accelerator Laboratory, Stanford, California 94309 USA
University of South Carolina, Columbia, South Carolina 29208, USA
Southern Methodist University, Dallas, Texas 75275, USA
Stanford University, Stanford, California 94305, USA
State University of New York, Albany, New York 12222, USA
Tel Aviv University, School of Physics and Astronomy, Tel Aviv 69978, Israel
University of Tennessee, Knoxville, Tennessee 37996, USA
University of Texas at Austin, Austin, Texas 78712, USA
University of Texas at Dallas, Richardson, Texas 75083, USA
INFN Sezione di Torino, I-10125 Torino, Italy
Dipartimento di Fisica, Università di Torino, I-10125 Torino, Italy
INFN Sezione di Trieste and Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy
IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
Using a sample of \((470.9 \pm 2.8) \times 10^6 \, B \bar{B} \) pairs, we measure the decay branching fraction
\[
B(B^0 \to D^{*+} \pi^- \pi^-) = (7.26 \pm 0.11 \pm 0.31) \times 10^{-3},
\]
where the first uncertainty is statistical and the second is systematic. Our measurement will be helpful in studies of lepton universality by measuring
\[
B(B^0 \to D^{*+} \tau^- \nu_\tau) \text{ using } \tau^- \to \pi^- \pi^- \pi^- \nu_\tau \text{, } \text{decays, normalized to } B(B^0 \to D^{*+} \pi^- \pi^- \pi^-) .
\]

DOI: 10.1103/PhysRevD.94.091101

The BABAR Collaboration measured the branching fraction ratios for \(B \) semleptonic decays to \(D \) and \(D^* \)
\[
\mathcal{R}^{(*)} = \frac{B(B \to D^{(*)} \ell^- \nu_\ell)}{B(B \to D^{(*)} \ell^- \nu_\ell)} ,
\]
where \(\ell^- \) is an electron or a muon, to be in excess of standard model (SM) predictions [1]. The use of charge conjugate reactions is implied throughout this article. After combining the results for \(\mathcal{R} \) and \(\mathcal{R}^* \), the excess is consistent with lepton universality at the 3.4\(\sigma \) level. The Belle Collaboration [2] and the LHCb Collaboration [3] conducted similar measurements with comparable results. A measurement of \(B(B^0 \to D^{*+} \pi^- \nu_\tau) \) using \(\tau^- \to \pi^- \pi^- \pi^- \nu_\tau \), may yield the observation of a further deviation from the SM. Such a measurement has not been done before and may make use of a clean kinematic signature. This possibility relies in part on a measurement of \(B(B^0 \to D^{*+} \pi^- \pi^- \pi^-) \), for which the current world average value is \((7.0 \pm 0.8) \times 10^{-3} [4] \). The LHCb Collaboration measured this value to be \((7.27 \pm 0.11(\text{stat}) \pm 0.36(\text{syst}) \pm 0.34(\text{norm})) \times 10^{-3} [5], \) where the final uncertainty is due to using \(B^0 \to D^{*+} \pi^- \) for normalization purposes. This measurement has not been included in the world average value as yet. In this article, we report on a measurement of \(B(B^0 \to D^{*+} \pi^- \pi^- \pi^-) \).

We use data recorded with the BABAR detector at the PEP-II asymmetric-energy \(e^+ e^- \) collider at SLAC. The BABAR detector is described in detail elsewhere [6,7]. The data sample corresponds to an integrated luminosity of \(424.2 \pm 1.8 \, fb^{-1} \) collected at the \(Y(4S) \) resonance [8], which corresponds to the production of \((470.9 \pm 2.8) \times 10^6 \, B \bar{B} \) pairs. We use Monte Carlo (MC) simulations to understand background processes and signal reconstruction efficiencies. The EvtGen event generator [9] is used to simulate particle decays. This includes a sample of \(e^+ e^- \to q\bar{q}(\gamma) \) events, where \(q \) is a \(u, d, s, \) or \(c \) quark, with an equivalent luminosity of \(2.589 \, fb^{-1} \) and a sample of \(1.427 \times 10^6 \, B \bar{B} \) pairs. The detector response is simulated with the Geant4 [10] suite of programs.

We fully reconstruct the \(B^0 \to D^{*+} \pi^- \pi^- \pi^- \) decay chain by adding the four-momenta of particle candidates. The \(D^{*+} \) mesons are reconstructed in the \(D^{*+} \to D^0 \pi^- \) and \(\bar{D}^0 \to K^- \pi^- \) final states. A \(\bar{D}^0 \) candidate is reconstructed from two charged-particle tracks, of which one is identified as a \(K^+ \) meson based on information obtained using the tracking and Cherenkov detectors. We require \(\bar{D}^0 \) candidates to have an invariant-mass value within \(\pm 20 \, MeV/c^2 \) of the nominal \(\bar{D}^0 \) mass [4], which corresponds to 3 standard deviations in its mass resolution. Each \(\bar{D}^0 \) candidate is combined with a charged-particle track with momentum less than \(0.45 \, GeV/c \) in the \(e^+ e^- \) center-of-mass (CM) frame to form a \(D^{*+} \) candidate. We require the difference between the reconstructed mass of the \(D^{*+} \) candidate and the reconstructed mass of the \(D^0 \) candidate to lie between \(0.1435 \) and \(0.1475 \, GeV/c^2 \). The \(D^{*+} \) candidate is combined with three other charged-particle tracks to form a \(B^0 \) candidate. We do not explicitly apply particle identification to select charged pions, but assign the pion mass hypothesis to all tracks other than the \(K^+ \) daughter of the \(\bar{D}^0 \). All other reconstructed tracks and neutral clusters in the event are collectively referred to as the rest of the event (ROE). We use a neural network classifier [11] to suppress non-\(B \bar{B} \) backgrounds. The classifier makes use of nine variables, each of which is calculated in the CM frame:

(i) the cosine of the angle between the \(B^0 \) candidate’s thrust axis [12] and the beam axis;
(ii) the sphericity [13] of the \(B^0 \) candidate;
(iii) the thrust of the ROE;
(iv) the sum over the ROE of \(p \), where \(p \) is the magnitude of a particle’s momentum;
(v) the sum over the ROE of \(\frac{1}{2} (3 \cos^2 \theta - 1) p \), where \(\theta \) is the polar angle of a particle’s momentum;
(vi) the cosine of the angle between the thrust axis of the \(B^0 \) candidate and the thrust axis of the ROE;
(vii) the cosine of the angle between the sphericity axis of the B^0 candidate and the thrust axis of the ROE;
(viii) the ratio of the second-order to zeroth-order Fox-Wolfram moment using all reconstructed particles [14];
(ix) the cosine of the angle between the thrust axis calculated using all reconstructed particles and the beam axis.

Each of these nine variables contributes to separating B^0 decays from non-$B\bar{B}$ decays. We apply a selection on the output of the neural network classifier that rejects 69% of reconstructed signal candidates from non-$B\bar{B}$ decays, and retains 80% of correctly reconstructed B^0 candidates. Finally, we require the B^0 candidate to have a CM-frame energy within ± 90 MeV of $\sqrt{s}/2$, where \sqrt{s} is the nominal invariant mass of the initial state. This corresponds to 4 standard deviations in the energy resolution. We retain all B^0 candidates that pass our selection criteria instead of selecting a best candidate for each event. In MC-simulated signal and background events that have at least one B^0 candidate passing all selection criteria, there are on average 1.57 and 1.37 B^0 candidates per event, respectively. We do not apply corrections to the number of B^0 candidates per event, as the B^0 candidate multiplicity in data is consistent with the weighted average of those in the signal and background simulation.

After applying all selection criteria, we determine the energy-substituted mass $m_{ES} = \sqrt{s}/4 - p^2_B$ for the selected B^0 candidates, where p_B is the CM-frame momentum of a B^0. Figure 1 shows the m_{ES} distribution for the data and for MC-simulated events. The m_{ES} distribution of correctly reconstructed signal candidates has a peak near the B^0 mass.

The m_{ES} distribution of signal events is modeled using a Crystal Ball [15] probability density function (PDF), with cutoff and power-law parameters determined using MC-simulated events. We consider only B^0 candidates that are correctly reconstructed. We model the background m_{ES} distribution as follows. The nonpeaking backgrounds from $e^+e^- \rightarrow q\bar{q}(\gamma)$ events and from $B\bar{B}$ pairs are modeled using an ARGUS function [16]. Each of the peaking backgrounds from B^+B^- and $B^0\bar{B}^0$ is modeled by a Gaussian distribution for which the normalization, mean, and width, are determined by a fit to the corresponding simulated event sample. We perform a one-dimensional unbinned extended-maximum-likelihood fit in order to estimate the number of signal candidates. We allow the mean and width parameters of the Crystal Ball function, the curvature parameter of the ARGUS function, and the normalization of the nonpeaking background, to vary in the fit. The cutoff parameter for the ARGUS function is fixed to $\sqrt{s}/2$, and the peaking background PDF shapes and normalizations are fixed to their MC-estimated values. The peaking background contributions are estimated to be 590 ± 120 and 1450 ± 130 candidates from B^+B^- and $B^0\bar{B}^0$ decays, respectively; some originate from signal decays where one or more pion is misreconstructed even when there is a correctly reconstructed B^0 candidate. There is also a contribution from $B^+ \rightarrow D^+X$ and $B^0 \rightarrow D^0X$ decays, where X denotes any combination of π and ρ mesons other than $\rho^0\pi^+$ or $\pi^+\pi^-\pi^+$. The fit to the m_{ES} distribution shown in Fig. 1 results in a signal yield of 17800 ± 300.

The distribution for the MC signal peaks 0.2 MeV/c2 higher in m_{ES} value than the data. This arises from a value of the simulated B^0 mass that is different from that found in Ref. [4]. We weight the simulated events in order to match the data mass peak and we repeat the measurement of the simulated efficiencies for the signal and the peaking background. The change is negligible and produces a negligible correction on the branching fraction measurement.

We define the signal region to be $5.273 < m_{ES} < 5.285$ GeV/c2, and a sideband region to be $5.240 < m_{ES} < 5.270$ GeV/c2. About 97.6% of signal events are contained within the signal region. To obtain the 3σ invariant-mass distribution for the signal events in Fig. 2, we subtract the events in the sideband region of the m_{ES} in Fig. 1, normalized to the fitted background component in the signal region, from the total 3σ mass distribution. By integrating the dashed line in Fig. 1, we obtain 68883 events in the sideband region and 24427 background events in the signal region. These values make use of the peaking background estimates described in the previous paragraph.

As expected from the branching fractions in Ref. [4], the main contribution comes from $a_1^-(1260)$ decays, and a contribution from the decay $D^+_s \rightarrow \pi^+\pi^-\pi^+$ is also
The analysis of the ground, the total number of produced efficiency of the decay channel order to determine the branching fraction correctly. The signal yield in our study of the reconstruction efficiency in B_α for the B_α assumes a mass of 233 events is estimated to be 84400 ± 1200. The two components are added in quadrature. The pion from the $D^{*-} \rightarrow D^0 \pi^-$ decay has momentum less than 0.18 GeV/c, a region dominated by tracks from the decay $D_s^{*-} \rightarrow D_s^0 \pi^-$, and 0.26% for greater than this value [17]. The two components are added in quadrature. The pion from the $D^{*-} \rightarrow D^0 \pi^-$ decay has momentum less than 0.18 GeV/c 62% of the time. The corresponding fraction

Table I summarizes the systematic uncertainties. The uncertainties are assumed to be uncorrelated, and so are added in quadrature.

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fit algorithm and peaking backgrounds</td>
<td>2.4</td>
</tr>
<tr>
<td>Track finding</td>
<td>2.0</td>
</tr>
<tr>
<td>$\pi^\pm \pi^\mp$ invariant-mass modeling</td>
<td>1.7</td>
</tr>
<tr>
<td>D^{*-} and D^0 decay branching fractions</td>
<td>1.3</td>
</tr>
<tr>
<td>$\Upsilon(4S) \rightarrow B^0\bar{B}^0$ decay branching fraction</td>
<td>1.2</td>
</tr>
<tr>
<td>K^+ identification</td>
<td>1.1</td>
</tr>
<tr>
<td>Signal efficiency MC statistics</td>
<td>0.9</td>
</tr>
<tr>
<td>Sideband subtraction</td>
<td>0.7</td>
</tr>
<tr>
<td>$B\bar{B}$ counting</td>
<td>0.6</td>
</tr>
<tr>
<td>Total</td>
<td>4.3</td>
</tr>
</tbody>
</table>

FIG. 2. The background-subtracted invariant-mass spectrum of the 3π system. The indicated mass value of the a_1^+ is obtained from Ref. [4]. The $B^0 \rightarrow D^{*-}a_1^+$, $D_1^+ \rightarrow \pi^+\pi^-\pi^+$ decay, which is removed in the final result, is visible in the spectrum. The spectrum is obtained prior to the efficiency correction. The inset shows the distribution around the D_1^+ region.

FIG. 3. The reconstruction efficiency as a function of 3π invariant mass using MC-simulated events. The uncertainties are statistical.
for other pions in the signal B^0 decay is 5%. The 3π invariant mass of the D_{1+}^* contamination has the same mass location and width in the data and MC-simulated events. However, there are differences between the full reconstructed 3π invariant-mass spectrum for the data and that obtained from MC-simulated events. We studied the signal yield before and after reweighting the 3π invariant-mass spectrum in the MC-simulated events to match the data. The observed change due to the reweighting of the 3π mass distribution is 1.7%, which we assign as the associated systematic uncertainty. This also accounts for uncertainties in the relative contributions of the different decay modes and the mass and width of the a_{1+}^0 resonance. We use the D_{0+} and \bar{D}^0 decay branching fraction uncertainties from Ref. [4]. We use the value of $B(Y(4S) \to B^0\bar{B}^0) = 0.486 \pm 0.006$ from Ref. [4] for the branching fraction of the decay $Y(4S) \to B^0\bar{B}^0$, which has a relative uncertainty of 1.2%. The kaon identification uncertainty is estimated by comparing the number of D_{0+} events in data and MC simulations with and without implementing identification requirements. According to dedicated studies using BABAR data control samples, we correct for kaon-identification efficiency differences between data and MC simulation by a factor of 0.978 ± 0.011, where the uncertainty is chosen to be half the difference from unity. The signal efficiency MC statistical uncertainty is 0.9%. Nominally, we subtract the 3π mass distribution in the sideband from that of the signal region. However, the 3π mass distribution of both peaking and nonpeaking backgrounds in the signal region may not necessarily be the same as that in the sideband. To estimate the associated systematic uncertainty, we test the sideband subtraction procedure using only MC-simulated background events. After applying efficiency corrections to the resulting distribution, we obtain an integral of 571. Dividing this by the number of efficiency-corrected signal in the data, this translates to a 0.7% difference, which we assign as the associated systematic uncertainty. The number of B mesons produced is uncertain to 0.6% [8]. We studied the MC modeling of decay angle correlations, and found the associated systematic uncertainty to be negligible. As described earlier in the text, there is a peaking background contribution in the m_{ES} distribution due to signal events that are misreconstructed. The rate of this background depends on the branching fraction of signal events. Using our measured branching fraction value, we apply corrections to the expected number of $B^0\bar{B}^0$ peaking background and repeat the signal extraction procedure on the data. There is a small bias on the branching fraction value but it is negligible compared to the systematic uncertainty due to the other peaking backgrounds.

From the number of fitted signal events, corrected for efficiency and normalized to the total number of produced B^0 mesons in the data sample, and taking into account the D_{0+} and \bar{D}^0 branching fractions we derive $B(B^0 \to D_{0+}\pi^+\pi^-) = (7.26 \pm 0.11 \pm 0.31) \times 10^{-3}$, where the first uncertainty is statistical and the second systematic. The result is consistent with the current world average and is 2.4 times more precise. This result can be used as input for measurements of $R^{(*)}$ using hadronic τ decays in the search for deviations from the SM. The inclusive branching fraction value without removing the D_{1+}^* contamination is $\left(7.37 \pm 0.11 \pm 0.31\right) \times 10^{-3}$.

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the U.S. Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Énergie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Economía y Competitividad (Spain), the Science and Technology Facilities Council (U.K.), and the Binational Science Foundation (U.S.-Israel). Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation (U.S.).