First measurement of ^{13}N from delayed neutron capture on hydrogen in the Double Chooz experiment

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
First measurement of θ_{13} from delayed neutron capture on hydrogen in the Double Chooz experiment

a III. Physikalisches Institut, RWTH Aachen University, 52056 Aachen, Germany
b Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA
c Argonne National Laboratory, Argonne, IL 60439, USA
d APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cité, 75205 Paris, Cedex 13, France
e Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, CIEMAT, E-28040, Madrid, Spain
f The Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637, USA
g Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, RJ, cep 22290-180, Brazil
h Columbia University, New York, NY 10027, USA
i University of California, Davis, CA 95616-8677, USA
j Physics Department, Drexel University, Philadelphia, PA 19104, USA
k Institut für Experimentalphysik, Universität Hamburg, 22761 Hamburg, Germany
l Hiroshima Institute of Technology, Hiroshima 731-5193, Japan
m Department of Physics, Illinois Institute of Technology, Chicago, IL 60616, USA
n Institute of Nuclear Research of the Russian Academy of Sciences, Russia
o Commissariat à l’Energie Atomique et aux Énergies Alternatives, Centre de Saclay, IBIF, 91191 GIF-sur-Yvette, France
p Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
q Department of Physics, Kansas State University, Manhattan, KS 66506, USA

* Corresponding author.
E-mail address: marianne.goeger@ph.tum.de (M. Göger-Neff).

0370-2693/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physletb.2013.04.050
Neutrino oscillations are well established in the three flavor paradigm and can be described by three mixing angles ($\theta_{12}, \theta_{23}, \theta_{13}$), a CP-violating phase δ, and two mass-squared differences ($\Delta m_{21}^2, \Delta m_{32}^2$). Among the three mixing angles, θ_{13} is the smallest and has recently been revealed to be non-zero [1–7]. The value of θ_{13} is a critical input for plans to measure δ and the neutrino mass hierarchy. Furthermore, it may provide important clues for physics beyond the Standard Model. The current best measurements of θ_{13} come from the reactor β-disappearance experiments Double Chooz, Daya Bay, and RENO [6,7,5]. All three experiments rely on the detection of the inverse beta decay (IBD) interaction, $\nu_e + p \rightarrow e^+ + n$, in Gd-doped liquid scintillator (LS). Typically these experiments search for a prompt positron signal followed by a 8 MeV gamma cascade from neutron capture on Gd. Background due to natural radioactivity, which is predominantly below 4 MeV, is largely suppressed. However, in Double Chooz it is also possible to search for a prompt positron followed by a 2.2 MeV gamma ray from neutron capture on hydrogen, thanks to the low background environment in the detector.

Though the latter analysis presents several challenges, it provides important benefits: a cross-check on the standard Gd analysis and improved ν_e energy spectrum shape information which is essential to our knowledge of θ_{13}.

In this Letter we present an analysis of IBD interactions with neutron capture on hydrogen in the Double Chooz far detector. Following the same approach as in previous reports [3,6], this analysis compares the candidate event rate and prompt energy spectrum shape to the Monte Carlo (MC) prediction. This analysis, however, differs from those reported [3,6] in two major ways. First, the definition of the delayed signal is changed from the \sim 8 MeV gamma cascade characteristic of a neutron capture on Gd to the 2.2 MeV gamma ray characteristic of a neutron capture on hydrogen. This change allows us to select a data set that is statistically independent of the Gd-based data set and has different systematic uncertainties and background characteristics. Second, because hydrogen captures occur in the undoped LS in addition to the Gd-doped region, a three times larger fiducial volume is available for analysis.

The Double Chooz far detector is located at a distance of \sim1050 m from the two 4.25 GWth reactor cores of the Chooz Nuclear Power Plant, with a rock overburden of 300 meters water equivalent. The central region of the detector consists of three concentric cylinders, collectively called the inner detector (ID). The innermost cylinder is the 10.3 m3 target. This is surrounded by a γ-catcher (22.5 m3). The target liquid is a PXE-based LS doped with Gd at a concentration of 1 g/l [8], while the γ-catcher liquid is an undoped LS. Outside the γ-catcher is the buffer, a 105 cm thick layer of non-scintillating mineral oil contained in a stainless steel tank. Light from the target and γ-catcher volumes is collected by 390 low-background 10-inch PMTs installed on the inner wall of the buffer tank [9–11]. Outside the buffer tank, and optically isolated from it, is the inner veto (IV), a 50 cm thick layer of liquid scintillator in a steel tank. The IV is equipped with 78 8-inch PMTs and serves as a veto for cosmic rays and fast neutrons entering the detector. The IV is surrounded by a 15 cm thick layer of demagnetized steel which suppresses γ-rays from radioactivity in the surrounding rock. Above the IV is the outer veto (OV) detector, a scintillator-strip-based muon tracking system. The OV system was installed during the data taking period, and about 2/3 of the data in this analysis benefit from OV use. A more detailed description of the entire detector can be found in Ref. [6].

The number of protons is estimated to be $(6.747 \pm 0.020) \times 10^{29}$ in the target [6] and $(1.582 \pm 0.016) \times 10^{30}$ in the γ-catcher volume, the latter being based on a geometrical survey and measurements of the scintillator hydrogen fraction.

The IBD signal is a twofold coincidence of a prompt positron energy deposition, E_{prompt}, and a delayed gamma energy deposition, E_{delay}, resulting from a neutron capture on hydrogen or Gd.
The separation in time and space, Δt and Δr, of the coincident events are determined by neutron capture physics. Neutron capture times are 200 μs in the γ-catcher and 30 μs in the target, where the presence of Gd greatly increases the neutron capture probability. In this analysis, where we search for $E_{\text{delay}} \approx 2.2$ MeV without any fiducial volume cuts, we expect to detect candidates in both the target and γ-catcher. Given that only 13% of the IBD interactions in the target volume are followed by neutron capture on hydrogen [6], 95% of the signal events used in this analysis are located in the γ-catcher.

Vertex reconstruction is based on a likelihood maximization of the charge and timing of the pulses detected at each PMT [6]. It allows the spatial correlation of prompt and delayed events, effectively removing accidental backgrounds.

We reconstruct the energy of all events via two steps: (1) a total charge (Q_{tot}) to photoelectron (PE$_{\text{eq}}$) conversion; and (2) a PE$_{\text{eq}}$ to visible energy (E$_{\text{vis}}$) conversion as done in the Gd analysis [6]. The first step takes into account a channel-by-channel, non-linear gain calibration. The second step uses a light yield of ~230 PE/MeV, defined by the neutron capture peak on hydrogen in 252Cf calibration source data. By applying correction factors derived from spallation neutron data, this step also corrects for the time variation and vertex dependence of the detector response. The same method is used to determine E$_{\text{vis}}$ for the MC sample.

This analysis uses data collected by the Double Chooz far detector between April 13, 2011 and March 15, 2012, which is the same time-period used in the latest Double Chooz Gd analysis [6]. The total live time is 240.1 days, which is different from 227.9 days used in the Gd analysis [6] because of different analysis cuts.

The IBD candidate selection is performed via the following procedure. To reduce muon-induced backgrounds, we reject all events that occur less than 1 ms after a cosmic muon crosses the IV or the ID. We use PMT charge isotropy and PMT pulse simultaneity cuts to reduce backgrounds caused by light emitted from PMT [6]. We measure the rate and energy spectrum of accidentals by identifying a sample of off-time coincidences. We collect this sample of off-time coincidences and associated systematic uncertainty from MC, as was done in the Gd analysis [6].

Finally, we found a small number of light noise events creating two consecutive triggers that are identified as IBD candidates. A volume cut on the reconstructed vertex is used to quantify the rate and E_{prompt} spectrum shape for this type of background. We estimate this background rate at 0.32 ± 0.07 events/day.

Calibration data taken with a 252Cf source in both the neutrino target and the γ-catcher are used to evaluate the fraction of neutron captures on hydrogen within the selection cuts Δt, ΔE_{delay}, and Δr. From these data, biases in these neutron selection criteria are evaluated and their contribution to the systematic uncertainties is estimated. The neutron detection efficiency, ϵ_n, which includes both the efficiency of the IBD selection and the fraction of neutron captures which occur on hydrogen, is found to be 78.53% in the γ-catcher, 1.66% lower than the fraction predicted by simulation. Therefore, the Monte Carlo simulation for the prediction of the number of captured neutrons was reduced by a factor of 0.984 in the γ-catcher. The remaining spread in the difference between the data and Monte Carlo across the γ-catcher amounts to 0.46%, resulting in $\epsilon_n = 0.7853 \pm 0.0036$. A similar procedure was implemented in the target giving $\epsilon_n = 0.0846 \pm 0.0018$.

Weighting by the fraction of predicted IBD candidates in each region, we estimate the uncertainty in the detection efficiency over the entire fiducial volume as 1%. Finally, we find that an uncertainty of 1.2% accounts for the MC modeling of neutron migration, called spill-in/out [6], between detector subvolumes. Adding these factors in quadrature, we obtain a total detection efficiency uncertainty of 1.6%.

Energy scale uncertainty arises from three sources: time variation, non-linearity, and non-uniformity in the detector response. We treat the first two effects exactly as in Gd analysis [6]. The third effect has a larger impact on the hydrogen analysis because of its extended fiducial volume. We estimate it by comparing data...
and MC from calibration source deployments in the γ-catcher. In total, we find an energy scale uncertainty of 1.7%, as compared to 1.1% used in the Gd analysis [6].

The reference E_{prompt} spectrum is selected from the same reactor power-based β_r MC sample generated for the Gd analysis [6]. Systematic uncertainties on the reference spectrum are the same as for the Gd analysis. We use the Bugey4 measurement to minimize the systematic uncertainty on the reactor neutrino flux prediction [12,6], which is the dominant uncertainty in this analysis. The no-oscillation expectation for the number of neutrino candidates is 36,680 ± 520, including background. The predicted number of events for both signal and backgrounds are summarized in Table 2, and uncertainties relative to the predicted signal statistics are shown in Table 3.

To extract $\sin^2 2\theta_{13}$ we compare both the rate and shape of the data to the reference E_{prompt} spectrum in 31 variably sized energy bins from 0.7 to 12.2 MeV. The fit procedure is identical to that used in the Gd analysis [3,6], except that we use a single integration period and include the Δr cut efficiency as an additional source of uncertainty. As in [3,6], the pull parameters in Table 3 are allowed to vary in the fit, subject to the constraints listed on their initial values. We use the MINOS value of $\Delta m^2 = (2.32 \pm 0.12) \times 10^{-3}$ eV2 as input for the fit [13]. We find a best fit of

$$\sin^2 2\theta_{13} = 0.097 \pm 0.034 \text{ (stat.)} \pm 0.034 \text{ (syst.)}$$

with χ^2/DOF of 38.9/30. As in the Gd analysis [6], we define statistical error as the portion of the 1 σ error which can be improved by collecting more data. This includes uncertainty from our current statistics (see Table 2) and uncertainty on background shapes. We define systematic error as the uncertainty which cannot be reduced simply by collecting more data. Fig. 1 shows the complete spectrum of IBD candidates with the fitted background contributions, while Fig. 2 shows the background-subtracted E_{prompt} spectrum along with the best fit. The pull parameters from the fit are summarized in Table 3 together with the input values. We have performed a frequentist study to determine the compatibility of the data and the no-oscillation hypothesis. Based on a $\Delta \chi^2$ statistic, defined as the difference between the χ^2 at the best fit and at $\sin^2 2\theta_{13} = 0$, the data exclude the no-oscillation hypothesis at 97.4% (2 σ). A fit incorporating only the rate information yields $\sin^2 2\theta_{13} = 0.044 \pm 0.022$ (stat.)± 0.056 (syst.). A simple ratio of observed to expected signal statistics yields $R = 0.978 \pm 0.011$ (stat.± 0.029 (syst.) at the far site.

The smaller best-fit value of $\sin^2 2\theta_{13}$ by the rate-only analysis can be explained by the 9Li background. The fit to the energy spectrum indicates a larger 9Li background contamination than the original estimate, although it is consistent within the systematic uncertainty. If the input 9Li rate is raised to the best-fit cosmogenic isotope rate in Table 3, about 1 sigma above the nominal input, the rate-only best fit moves to 0.072 ± 0.055, in closer agreement with our rate + shape standard result.

In summary, due to the low level of backgrounds achieved in the Double Chooz detector, we have made the first measurement of $\sin^2 2\theta_{13}$ using the capture of IBD neutrons on hydrogen. This technique enabled us to use a different data set with partially different systematic uncertainties than that used in the standard Gd analysis [6]. An analysis based on rate and spectral shape information yields $\sin^2 2\theta_{13} = 0.097 \pm 0.034$ (stat.) ± 0.034 (syst.), which is in good agreement with the result of the Gd analysis $\sin^2 2\theta_{13} = 0.109 \pm 0.030$ (stat.± 0.025 (syst.) [6]. With increased statistics and a precise evaluation of the correlation of the system.

Table 1

<table>
<thead>
<tr>
<th>Source</th>
<th>Predicted/observed events</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{\nu}_e$ prediction (no osc.)</td>
<td>17690</td>
</tr>
<tr>
<td>Accidents</td>
<td>17630</td>
</tr>
<tr>
<td>Cosmogenic isotopes</td>
<td>680</td>
</tr>
<tr>
<td>Fast neutrons</td>
<td>600</td>
</tr>
<tr>
<td>Light noise</td>
<td>80</td>
</tr>
<tr>
<td>Total prediction</td>
<td>36,680</td>
</tr>
<tr>
<td>Observed IBD candidates</td>
<td>36,284</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor flux</td>
<td>1.8</td>
</tr>
<tr>
<td>Statistics</td>
<td>1.1</td>
</tr>
<tr>
<td>Accidental background</td>
<td>0.2</td>
</tr>
<tr>
<td>Cosmogenic isotope background</td>
<td>1.6</td>
</tr>
<tr>
<td>Fast neutrons</td>
<td>0.6</td>
</tr>
<tr>
<td>Light noise</td>
<td>0.1</td>
</tr>
<tr>
<td>Energy scale</td>
<td>0.3</td>
</tr>
<tr>
<td>Efficiency</td>
<td>1.6</td>
</tr>
<tr>
<td>Total</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Pull parameter</th>
<th>Initial value</th>
<th>Best-fit value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cosmogenic isotope $[\text{day}^{-1}]$</td>
<td>2.8±1.2</td>
<td>3.9±0.6</td>
</tr>
<tr>
<td>Fast neutrons $[\text{day}^{-1}]$</td>
<td>2.5±0.5</td>
<td>2.6±0.4</td>
</tr>
<tr>
<td>Energy scale</td>
<td>1.00±0.02</td>
<td>0.99±0.01</td>
</tr>
<tr>
<td>$\Delta m^2 (10^{-3} \text{ eV}^2)$</td>
<td>2.32±0.12</td>
<td>2.31±0.12</td>
</tr>
</tbody>
</table>

Fig. 1. (Color online.) Stacked histogram showing the prompt energy spectrum of neutrino candidates without background subtraction (black data points with statistical error bars). The red (grey) line is the best fit oscillation hypothesis. Also shown are contributions from accidentals (blue cross-hatched), 9Li at the best-fit rate (green vertical lines), fast neutrons at the best-fit rate (purple diagonal lines), and correlated light noise (orange horizontal lines).
Fig. 2. (Color online.) Top: Data with best-fit backgrounds subtracted (black points with statistical error bars) are superimposed on the prompt energy spectra expected in the case of no oscillations (dashed blue line) and for our best fit \(\sin^2 2\theta_{13} \) (solid red line). The best fit has \(\chi^2/\text{DOF} = 38.9/30 \). Solid gold bands indicate systematic errors in each bin. Middle: The ratio of data to the no-oscillation prediction (black points with statistical error bars) is superimposed on the expected ratio in the case of no oscillations (blue dashed line) and for our best fit \(\sin^2 2\theta_{13} \) (solid red line). Gold bands indicate systematic errors in each bin. Bottom: The difference between data and the no-oscillation prediction is shown in the same style as the ratio (above).

Acknowledgements

We thank the French electricity company EDF; the European fund FEDER; the Région de Champagne Ardenne; the Département des Ardennes; and the Communauté des Communes Ardennes Rives de Meuse. We acknowledge the support of the CEA, CNRS/IN2P3, the computer center CCIN2P3, and LabEx UnivEarthS in France; the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) and the Japan Society for the Promotion of Science (JSPS); the Department of Energy and the National Science Foundation of the United States; the Ministerio de Ciencia e Innovación (MICINN) of Spain; the Max Planck Gesellschaft, and the Deutsche Forschungsgemeinschaft DFG (SBH WI 2152), the Transregional Collaborative Research Center TR27, the excellence cluster "Origin and Structure of the Universe", and the Maier-Leibnitz-Laboratorium Garching in Germany; the Russian Academy of Science, the Kurchatov Institute and RFBR (the Russian Foundation for Basic Research); the Brazilian Ministry of Science, Technology and Innovation (MCTI), the Financiadora de Estudos e Projetos (FINEP), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the São Paulo Research Foundation (FAPESP), and the Brazilian Network for High Energy Physics (RENAFAE) in Brazil.

References