Nodal-link semimetals

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevB.96.041103</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sat Dec 08 16:30:43 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/110651</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
In topological semimetals, the valance band and conduction band meet at zero-dimensional nodal points or one-dimensional nodal rings, which are protected by band topology and symmetries. In this Rapid Communication, we introduce “nodal-link semimetals”, which host linked nodal rings in the Brillouin zone. We put forward a general recipe based on the Hopf map for constructing models of nodal-link semimetals. The consequences of nodal ring linking in the Landau levels and Floquet properties are investigated.

DOI: 10.1103/PhysRevB.96.041103

Introduction. Topological phases of matter have been among the most active research subjects in condensed matter physics. They can be broadly classified as two major classes. The first class of phases, including topological insulators and superconductors [1–6], and other symmetry protected topological phases [7], have gapped bulks with nontrivial topological structures characterized by topological invariants [8–15], dictating the existence of robust gapless modes on the boundary.

More recently, the second major class of topological materials, known as topological semimetals, have attracted widespread attention. In the noninteracting limit, they are characterized by topologically robust k-space band-touching manifolds, which can be zero-dimensional (0D) nodal points or one-dimensional (1D) nodal rings (or nodal lines). The bulk Dirac [16–25] and Weyl points [26–40] are responsible for novel phenomena related to chiral anomaly [41–51]. Moreover, bulk Weyl points entail surface Fermi arcs, while nodal rings [52–72] imply flat surface band (drumhead states) that may trigger interesting correlation effects [73]. Nodal rings have been predicted (e.g., Cu3PdN [60,61], Hg3As2 [74], Ca3P2 [63,75], three-dimensional (3D) carbon networks [58], CaP3 [76], alkaline earth metals [77,78]) and experimentally studied in quite a few materials (e.g., PbTaSe2 [62], ZrSiTe [79], ZrSiS [80–84]). Notably, nodal rings can be driven to Floquet Weyl points by circularly polarized light [85–89]; accordingly, the drumhead surface states become Fermi arcs.

Unlike nodal points, nodal rings allow richer topological structures. They can touch at special points [60,61,90,91], enabling formations of nodal chains [92,93]. In this Rapid Communication, we introduce another type of topological semimetals, dubbed “nodal-link semimetals”, which host nontrivially linked nodal rings [e.g., Fig. 1(e)]. Furthermore, a method is introduced for constructing two-band models of nodal-link semimetals. We investigate generic physical consequences of nontrivial linking; in particular, a global toroidal π Berry phase generates a half-integer shift of Landau level index when the magnetic field is perpendicular to the ring plane. In addition, a suitable periodic external field can drive a nodal-link semimetal to a Floquet Hopf insulator.

Models. Nodal rings come from the crossing of two adjacent bands, thus we focus on two-band Bloch Hamiltonians, which can generally be written as

\[H(\mathbf{k}) = a_0(\mathbf{k}) \mathbf{1} + a_1(\mathbf{k}) \tau_x + a_2(\mathbf{k}) \tau_y + a_3(\mathbf{k}) \tau_z, \]

where \(\mathbf{k} = (k_x,k_y,k_z) \), \(\tau^i \)'s are Pauli matrices, and \(a_0(\mathbf{k}) = 0 \) will be adopted for simplicity (nonzero \(a_0 \) can be trivially included, if needed). Nodal rings are protected by crystal symmetries. For concreteness, we take the \(PT \) symmetry [66,94] that ensures the reality of \(H(\mathbf{k}) \), i.e., \(a_2(\mathbf{k}) = 0 \). Now the spectra are \(E_{\pm}(\mathbf{k}) = \pm \sqrt{\alpha_1^2 + \alpha_2^2} \), and the nodal rings are given by solving \(a_1(\mathbf{k}) = a_2(\mathbf{k}) = 0 \). A purpose of this Rapid Communication is to construct models with mutually linked nodal rings.

Instead of taking trial-and-error approaches, we put forward a general method based on Hopf maps [95,96]. They play special roles in quantum spin systems [95,97], topological Hopf insulators [98–103], liquid-crystal solitons [104], quench dynamics of Chern insulators [105], and minimal models for topologically trivial superconductor-based Majorana zero modes [106]. Mathematically, a Hopf map is a nontrivial mapping from a three-sphere \(S^3 \) to a two-sphere \(S^2 \), which possesses a nonzero Hopf invariant [95,96,98]. Moreover, it has the geometrical property that the preimage circles of any two points on \(S^2 \) are linked. Mappings from a 3D torus \(T^3 \) to \(S^2 \) inherit the nontrivial topology of Hopf maps through \(T^3 \to S^2 \to S^1 \), where \(T^3 \to S^2 \) is a map with unit winding number, and \(S^2 \to S^1 \) is a Hopf map.

Given any vector function \(\mathbf{d}(\mathbf{k}) = (d_x,d_y,d_z) \) on the Brillouin zone \(T^3 \), one can define a mapping from \(T^3 \) to \(S^2 \) by \(\mathbf{k} \to \mathbf{d}(\mathbf{k}) \), where \(\mathbf{d} \equiv \mathbf{d}/|\mathbf{d}| \). To define the Hopf invariant, it is convenient to express the vector \(\mathbf{d} \) in terms of a spinor, namely, \(d_z(\mathbf{k}) = z^* \tau_z \), with \(z(\mathbf{k}) = (z_1,z_2)^T \). Let us write \(z_1 = N_1 + iN_2 \), \(z_2 = N_3 + iN_4 \), then the Hopf invariant simplifies to [103]

\[n_h = \frac{1}{2\pi^2} \int d^3k \epsilon^{abcde} \hat{N}_a \hat{N}_b \hat{N}_c \hat{N}_d, \]

where \(\hat{N}_a \) is the \(a \)th component of the vector \(\mathbf{N} = (N_1,N_2,N_3,N_4) \) normalized to unit length.

* wangzhongemail@tsinghua.edu.cn
Let us take a point on S^2, say $\mathbf{n}_1 = (0,1,0)$. Under the mapping $\mathbf{k} \rightarrow \mathbf{d}(\mathbf{k})$, all the preimages of \mathbf{n}_1 have to satisfy

$$d_x(\mathbf{k}) = d_z(\mathbf{k}) = 0,$$

(3)

however, the converse is not true, namely, a solution of Eq. (3) is not necessarily a preimage of \mathbf{n}_1. In fact, the preimages of $\mathbf{n}_2 = (0,-1,0)$ also satisfy Eq. (3). In a single equation, Eq. (3) gives the preimages of both \mathbf{n}_1 and \mathbf{n}_2. This is among the key observations in our construction. When n_h is nonzero, the preimage circles of any two points (say \mathbf{n}_1 and \mathbf{n}_2) are linked. Therefore, we can obtain linked nodal rings by taking

$$a_1(\mathbf{k}) = d_x(\mathbf{k}), \quad a_3(\mathbf{k}) = d_z(\mathbf{k}).$$

(4)

Recall that the a_2 term is absent due to crystal symmetries, as discussed above. The same method also works if we start from a different $\mathbf{n}_{1,2}$; for instance, taking $\mathbf{n}_{1,2} = (0,0, \pm 1)$ leads to $a_1 = d_x$, $a_3 = d_y$, which yields a nodal link as well.

$$H(\mathbf{k}) = \left[2 \sin k_x \sin k_z + 2 \sin k_y \left(\sum_{i=x,y,z} \cos k_i - m_0 \right) \right] \tau_x + \left[\sin^2 k_x + \sin^2 k_y - \sin^2 k_z - \left(\sum_{i=x,y,z} \cos k_i - m_0 \right)^2 \right] \tau_z. \quad \text{(6)}$$

The nodal rings consist of points where both coefficients of τ_x and τ_z vanish. We find that one of the rings is $k_x = k_z$, $\sin k_x = m_0 - \sum_i \cos k_i$, and the other is $k_y = -k_z$, $\sin k_y = \sum_i \cos k_i - m_0$, shown in light and dark blue, respectively, in Fig. 1. Figure 1(a) shows the unlinked rings for $m_0 = 3.2$, and Fig. 1(c) illustrates the linked rings for $m_0 = 2.5$ (a Hopf link). The critical point $m_0 = 3.0$, when the two rings cross each other, is shown in Fig. 1(c). The direction of pseudospin vector (d_x, d_z) is plotted in Figs. 1(b), 1(d) and 1(f), indicating that the light-blue ring encloses a pseudospin vortex in the linked regime [Fig. 1(f)], in contrast to the unlinked case [Fig. 1(b)]. The surface states for $m_0 = 2.5$ are shown in Fig. 2. The two-disk-overlapping region has zero and two flat bands in Figs. 2(a) and 2(c), respectively, which is consistent with the winding number [107] in each region.

Near the critical point [Fig. 1(c)], we can expand the Hamiltonian as

$$H(\mathbf{k}) = \left[2k_x k_z + 2k_y (m - k^2/2) \right] \tau_x + \left[k_x^2 + k_z^2 - k_y^2 - (m - k^2/2)^2 \right] \tau_z,$$

(7)

where $k^2 = \sum_{i=x,y,z} k_i^2$. When $m = 0$, we have $H(\mathbf{k}) \approx 2k_x k_z \tau_x + (k_z^2 + k_x^2 - k_y^2) \tau_z$, thus the dispersion is quadratic in all three directions. Consequently, we find that, for $m = 0$, the density of states follows $g(E) \sim \sqrt{E}$ near zero energy, in contrast to $g(E) \sim E$ for $m \neq 0$. Just like the nontrivial topology of insulators can be undone by closing the energy gap, the nontrivial nodal-line linking can be untied through quadratic-dispersion critical points [Fig. 1(c)], where $g(E) \sim \sqrt{E}$.

This is a quite general approach to construct nodal-link semimetals. As an example, we take [98–103]

$$N_1 = \sin k_x, \quad N_2 = \sin k_y, \quad N_3 = \sin k_z,$$

$$N_4 = \cos k_x + \cos k_y + \cos k_z - m_0,$$

(5)

which has $n_h = -1$ for $1 < m_0 < 3$ and $n_h = 0$ for $m_0 > 3$. The explicit forms of d_i’s read

$$d_x = 2 \sin k_x \sin k_z + 2 \sin k_y \left(\sum_{i=x,y,z} \cos k_i - m_0 \right),$$

$$d_y = -2 \sin k_y \sin k_z + 2 \sin k_x \left(\sum_{i=x,y,z} \cos k_i - m_0 \right),$$

$$d_z = \sin^2 k_x + \sin^2 k_y - \sin^2 k_z - \left(\sum_{i=x,y,z} \cos k_i - m_0 \right)^2.$$

Following Eq. (4), a lattice model of nodal-link semimetal is

We remark that, although a nodal chain [92,93] also contains crossings like Fig. 1(c), its dispersion is not quadratic in all three directions at the crossing point, and the density of states is linear instead of square root.

\textit{Landau levels.} A key difference between a usual unlinked ring and a linked one is a global Berry phase along the ring. Let us draw a thin torus enclosing a nodal ring, then the Berry phase along the poloidal direction is always π, in contrast, the Berry phase along the toroidal direction can be 0 or π (mod 2π), corresponding to the unlinked and linked ring, respectively. [The 0 or π toroidal Berry phase of the light-blue ring can be read from the spin texture in Figs. 1(b) and 1(f), respectively.]

This π toroidal Berry phase can qualitatively affect the Landau levels. It is challenging to find analytic expressions of Landau levels for Eq. (6), nevertheless, a different model allows a simple solution: we take $a_1 = d_x(\mathbf{k})$, $a_3 = d_z(\mathbf{k})$ in Eq. (1). This Bloch Hamiltonian harbors four straight nodal lines at $(k_x,k_y) = (0,0)$, $(0,\pi)$, (π,π), and (π,π), respectively. When $1 < m_0 < 3$, a nodal ring encircling $(k_x,k_y) = (0,0)$ is also found as $\cos k_x + \cos k_z = m_0 - 1$ in the $k_z = 0$ plane. Instead of working on this lattice Hamiltonian, we study its continuum limit for simplicity:

$$H(\mathbf{k}) = 2 \left[k_x k_z + (m - C k^2) k_y \right] \tau_x + 2 \left[-k_x k_z + (m - C k^2) k_y \right] \tau_y,$$

(8)

where $k^2 = k_x^2 + k_y^2 + k_z^2$, $m = 3 - m_0$, and $C = 0.5$. We have also done a basis change $\tau_z \rightarrow \tau_y$ for later convenience. This model hosts a nodal line $k_x = k_y = 0$ and a nodal ring $k_x^2 + k_y^2 = m/C$ in the $k_z = 0$ plane, which are linked.
FIG. 1. Nodal rings of Eq. (6), and the pseudospin textures in the $k_y = k_z$ plane, for [(a),(b)] $m_0 = 3.2$, [(c),(d)] $m_0 = 3.0$, and [(e),(f)] $m_0 = 2.5$. The light-blue ring locates in the $k_y = k_z$ plane, while the dark-blue ring is perpendicular to it.

Now we add a magnetic field along the z direction, $B = B \hat{z}$. It is standard to do the replacement $k \rightarrow \Pi = -i \nabla + eA$ with $A = (0, Bx, 0)$ [108]. It is convenient to introduce the ladder operators, $a = \frac{\sqrt{2}}{l_B} (\Pi_x - i \Pi_y)$, $a^\dagger = \frac{\sqrt{2}}{l_B} (\Pi_x + i \Pi_y)$, where $l_B = 1/\sqrt{eB}$ is the magnetic length. The Hamiltonian becomes

$$ H = \begin{pmatrix}
0 & f(k_z) \frac{2m_0}{l_B} \\
\frac{2m_0}{l_B} f(k_z) & 0
\end{pmatrix} $$

(9)

where $f(k_z) = 2 [k_z - i(m - Ck_z^2 - \frac{2Ca^\dagger a}{l_B})]$. The Landau levels are found to be

$$ E_{n,\pm}(k_z) = \begin{cases}
\pm \sqrt{8n \left[k_z^2 + (m - Ck_z^2 - n\omega_c)^2\right]/l_B}, & n \geq 1, \\
0, & n = 0,
\end{cases} $$

(10)

where $\omega_c \equiv 2C/l_B^2$. The low-energy eigenvalues are around $n \sim 0$ and $n \sim m/\omega_c$, the former coming from the central

FIG. 2. (a) Surface flat bands for $z = 0$ boundary. (b) The spectra as a function of k_y (fixed $k_z = 0$) for an 800-site-thick slab perpendicular to the z axis. (c) The $y = 0$ surface states. (d) Spectra of a slab perpendicular to the y axis. (e) $x = 0$ surface Brillouin zone without surface states. (f) Spectra of a slab perpendicular to the x axis. The black rings or lines in (a), (c), and (e) are projections of the bulk nodal link to the surface Brillouin zone. In (c), the number of bands in the two-disk-overlapping region is twice that of the nonoverlapping regions. Here, $m_0 = 2.5$.

041103-3
nodal line at \(k_x = k_y = 0 \), while the latter coming from the nodal ring in the \(k_z = 0 \) plane. As a comparison, we also consider a model with an unlinked ring:

\[
H(k) = (m - Ck^2)\tau_x + k_z\tau_z. \tag{11}
\]

Following the same steps, we find that the Landau levels are \(E_{n,\pm}(k_z) = \pm \sqrt{k_x^2 + [m - Ck_z^2 - (n + \frac{1}{2})\omega]_+^2}, \quad n \geq 0. \tag{12} \)

Comparing Eq. (10) and Eq. (12), we see that the presence of a linked nodal line causes a shift of Landau level index by 1/2, namely, \(n \to n - 1/2 \), which is a consequence of the \(\pi \) toroidal Berry phase. Such a shift can be measured by magnetotransport or magneto-optical experiments.

To highlight the effect of \(\pi \) Berry phase, we rederive the Landau levels using semiclassical quantization [109–111] :

\[
S(k_z) = 2\pi e B(n + 1/2 - \phi_B/2\pi), \tag{13}
\]

where \(S \) is the cross-sectional area of a \(k \)-space orbit, and \(\phi_B \) is the Berry phase along the orbit. For the linked ring, we have \(\phi_B = \pi \) (the toroidal Berry phase), and a semiclassical calculation (see Supplemental Material for details [112]) yields the Landau levels in Eq. (10).

Floquet Hopf insulator from nodal link. We will show that driving the nodal-link semimetal described by Eq. (8) creates a Floquet Hopf insulator. We consider a periodic driving generated by a circularly polarized light (CPL) propagating in the \(z \) direction. The vector potential \(A(t) = A_0(\cos \omega t, \eta \sin \omega t, 0) \), where \(\eta = 1 \) and \(-1\) stands for right-handed and left-handed CPL, respectively. Its effect is described by the minimal coupling, \(H(k) \to H(k + eA_{\parallel}(t)) \). The full Hamiltonian is time-periodic, \(H(k, t + T) = H(k, t) \) with \(T = 2\pi/\omega \), thus it can be expanded as \(H(k, t) = \sum_n H_n(k)e^{i\omega n t} \), with

\[
\begin{align*}
H_0(k) &= 2 \{ \tau_x k_x + k_y (\bar{m}_2 - Ck_z^2) \} + 2 \{ -\tau_x m + k_y (\bar{m}_2 - Ck_z^2) \} \\
H_{\pm 1}(k) &= eA_0 [\pm \eta k_y + (m - Ck_z^2 - 2Ck_x (\pm i\eta k_y))] \tau_x + eA_0 [\pm \eta k_z + (m - Ck_z^2 - 2Ck_x (\pm i\eta k_z))] \tau_y, \\
H_{\pm 2}(k) &= C\varepsilon^2 A_0^2 \{ \tau_x \mp \eta k_y \} + 2 \{ -\tau_x m + k_y (\bar{m}_2 - Ck_z^2) \} \tau_y,
\end{align*}
\]

where \(\bar{m}_{\pm} \equiv m \pm \varepsilon \chi C A_0^2 \). In the off-resonance regime, we can use an effective time-independent Hamiltonian [113–121]:

\[
H_{\text{eff}}(k) = H_0 + \sum_{n=1}^\infty \left[\frac{H_n, H_{n-1}}{n \omega} + O \left(\frac{1}{\omega^2} \right) \right]
\]

\[
= 2 \{ \tau_x k_x + k_y (\bar{m}_2 - Ck_z^2) \} + 2 \{ -\tau_x k_x + k_y (\bar{m}_2 - Ck_z^2) \} \tau_y + \lambda \left[k_x^2 + (\bar{m}_1 - Ck_z^2) \right] - 2Ck_x^2 \left(\bar{m}_1 - Ck_z^2 - \frac{\gamma}{2} \right) \tau_z, \tag{15}
\]

where \(\lambda = 4\eta e^2 A_0^2 / \omega \), \(\gamma = C\varepsilon^2 A_0^2 \), and \(k_\rho = \sqrt{k_x^2 + k_z^2} \). The energy spectrum of \(H_{\text{eff}} \) is fully gapped. For weak driving, the minima of the band are located at \(k_z = 0 \), \(Ck_\rho = \bar{m}_2 \), and the gap is estimated as \(E_g \approx 12mC(eA_0)^2/\omega \). In the CPL approach, this gap is expected to be rather small. It can be promoted to the order of \((eA_0)^2 \) by adding a small \(\Delta \tau_z \) pseudo-Zeeman term (see Supplemental Material for details of calculation).

If we remove the \(\tau_z \) term, Eq. (15) hosts a nodal ring and a nodal line linked together. It is readily checked that the coefficient of \(\tau_z \) is positive on the line and negative on the ring (for \(\eta = +1 \)), thus the corresponding unit \(\bar{d} \) vector is \((0,0,1)\) and \((0,0,-1)\), respectively. This fact suggests that Eq. (15) describes a (Floquet) Hopf insulator [98–103], or more precisely, a Floquet Hopf-Chern insulator [102], because the Chern number \(C(k_x, k_y, k_z) = -2 \) for arbitrary \(k_z \), as found in our numerical calculation. In the definition of Hopf invariant [95,98], a nonsingular global Berry potential is needed, which is impossible in the presence of a nonzero Chern number, nevertheless, we can study topological surface states. For a slab perpendicular to the \(z \) axis, we can solve the differential equation \(H_{\text{eff}}(k_x, k_y, -i\tau_z) \Psi_{k_x, k_y, k_z}(z) = \gamma \Psi_{k_x, k_y, k_z}(z) \), which gives one surface band for each surface, whose dispersion is (see Supplemental Material for calculation) \(E_\alpha(k_x, k_y) = 2\alpha(\varepsilon/ C + \gamma^2/2) k_z^2 \), where \(\alpha = (+) \) for the top (bottom) surface. Shown in Fig. 3, this dispersion is characteristic of a Hopf insulator [98]. For a fixed \(\theta \) (defined as \(\theta = \arctan k_x / k_y \)), the surface state of either the top or bottom surface is chiral, which can be understood in terms of a Chern number in the \((k_x, k_y)\) space [103].

Conclusions. We have introduced nodal-link semimetals into the family of topological semimetals. A general method for their model construction has been put forward. These phases may be realized by tuning the hoppings in optical lattices. Finding a solid-state material will be important progress. It will also be worthwhile to study possible novel effects of linking. Theoretically, our models lay useful groundwork for topological field theories [122] in the Brillouin zone.

Note added. Recently, we became aware of a related eprint by Chen et al., in which a double-helix link is constructed without using the Hopf map [123]. In another recent work, the Hopf map method has been generalized by Ezawa to construct other nodal links [124].
Acknowledgments. We thank Chen Fang for useful comments. Z.Y., R.B., and Z.W. are supported by NSFC (Grant No. 11674189). Z.Y. is supported in part by China Postdoctoral Science Foundation (Grant No. 2016M590082). L.L. is supported by NSF (Grant No. DMR-1305677). We thank Chen Fang for useful comments. Z.Y., R.B., and Z.W. are supported by NSFC (Grant No. 11674189). Z.Y. is supported in part by China Postdoctoral Science Foundation (Grant No. 2016M590082). L.L. is supported by NSF (Grant No. DMR-1305677).

Note that Π_x, Π_y do not commute. We take the symmetric ordering for operators, e.g., $\Pi_x \Pi_y \rightarrow (\Pi_x \Pi_y + \Pi_y \Pi_x + \Pi_y \Pi_x + \Pi_x \Pi_y)/3$.